Predicting Clinical Phenotypes in Crohn's Disease Using Machine Learning and Single-Cell 'omics
使用机器学习和单细胞组学预测克罗恩病的临床表型
基本信息
- 批准号:10586795
- 负责人:
- 金额:$ 71.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAge YearsAlgorithmsAnemiaAutoimmuneAutomobile DrivingBehaviorBenchmarkingBiopsyCellsChildhoodChromosome MappingChronicClassificationClinicalClinical ManagementComplexComplicationComputer ModelsCrohn&aposs diseaseDataData SetDevelopmentDiagnosisDiagnosticDiseaseDisease ManagementDisease OutcomeDisease ProgressionDisease ResistanceEarly treatmentEnrollmentEvaluationFistulaFunctional disorderFutureGastrointestinal DiseasesGastrointestinal tract structureGene ExpressionGene Expression ProfileGenesGeneticGoalsHealthHistologyHistopathologyImage AnalysisIncidenceInflammatoryInterventionKnowledgeLiteratureMachine LearningMalabsorption SyndromesMapsMetadataMethodologyMethodsMicroscopicModelingMolecularMorphologyMucous MembraneNewly DiagnosedOperative Surgical ProceduresOutcomePathologicPatientsPatternPediatric Crohn&aposs diseasePenetrationPerformancePhenotypePhysical shapePredictive ValuePreventionProspective cohortPublishingRelapseReportingResearchResolutionReview LiteratureRiskSensitivity and SpecificitySeveritiesSlideTNF geneTestingTherapeutic InterventionTimeTissue ExtractsTissuesTrainingTranslationsVisualizationWorkaccurate diagnosticsadverse outcomeage groupbench to bedsidebiobankbiomedical imagingclinical careclinical phenotypeclinical practiceclinical predictorsclinically relevantcohortcostdisease phenotypefeature detectiongenetic signatureimprovedindividual patientindividualized medicineinnovationmachine learning methodmachine learning modelmachine learning predictionmodel buildingnoveloutcome predictionpersonalized diagnosticspersonalized interventionpersonalized medicineprecision medicinepredictive modelingpredictive toolspreventpreventive interventionprognosticprospectivepsychosocialrecruitresponserisk prediction modelsingle-cell RNA sequencingspatial integrationstandard of caretranscriptomicstreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Pediatric Crohn's disease presents as a chronic, relapsing inflammatory condition of the gastrointestinal tract,
leading to malabsorption, anemia, and psychosocial decline. The incidence rate of Crohn's disease has been
growing in the 10- to 18-year age group. Crohn’s disease exists on a spectrum of clinical severity, ranging from
mild disease responsive to standard anti-TNFɑ therapy to severe, treatment-resistant disease with stricturing
(B2) or penetrating (B3) complications often requiring surgical intervention. Distinguishing which patients will
progress to more severe disease from patients who will require minimal intervention at the time of diagnosis is
an urgent unmet need. Accurate and automated prediction of disease outcomes will significantly improve patient
health by informing personalized interventions for individual patients. Previous attempts at generating predictive
models of Crohn’s disease relying solely on clinical features of the disease and patient biodata have
demonstrated promising, yet inadequate accuracies for clinical practice applications. This proposal addresses
these limitations by leveraging large cohorts of archival and prospective patient clinical metadata, ‘omics, and
machine learning derived tissue features to build and test machine learning models for predicting specific Crohn's
disease outcomes. In Aim 1, we will build, test, and validate predictive models of Crohn’s disease using
computational image analysis of gold-standard biopsy histopathology slides. We will use saliency maps and
gene correlations analysis to validate our models by visualizing the tissue features of importance to our predictive
models and identify specific transcriptomic changes associated with these features. In Aim 2, we will generate
a clinically-relevant predictive model of Crohn’s disease by integrating the deep features extracted from histology
image analysis with other patient metadata collected as part of standard clincal care. Additionally, we will collate
a thorough list of published predictive models of Crohn's disease to benchmark the performance of our proposed
and future predictive models. Lastly, in Aim 3 we will use cutting edge single-cell RNA sequencing and spatial
transcriptomics approaches to elucidate a transcriptomic signature of Crohn's disease and characterize specific
genetic profiles associated with the hallmark morphological changes in diseased tissue. These data will provide
a framework for studying the subtypes and clinical outcomes of Crohn’s disease and other gastrointestinal
diseases, thus driving the clinical adaptation of personalized therapy and precision medicine. This proposed
research will increase the resolution of both diagnostic and prognostic information to better manage Crohn’s
disease in patients and significantly shft clinical management to an individualized treatment paradigm.
项目概要/摘要
儿童克罗恩病表现为一种慢性、复发性胃肠道炎症,
导致吸收不良、贫血和心理衰退,克罗恩病的发病率一直很高。
克罗恩病在 10 至 18 岁年龄组中存在不同的临床严重程度。
对标准抗 TNFɑ 治疗有反应的轻度疾病 对具有狭窄性的严重、难治性疾病
(B2) 或穿透性 (B3) 并发症通常需要手术干预。
诊断时需要最少干预的患者进展为更严重的疾病
对疾病结果的准确和自动化预测将显着改善患者的状况。
通过为个体患者提供个性化干预措施来实现健康健康。
仅依赖于疾病的临床特征和患者生物数据的克罗恩病模型
该提案解决了临床实践应用中前景广阔但精度不足的问题。
通过利用大量档案和前瞻性患者临床元数据、“组学”和
机器学习派生的组织特征,用于构建和测试用于预测特定克罗恩病的机器学习模型
在目标 1 中,我们将使用构建、测试和验证克罗恩病的预测模型。
金标准活检组织病理学载玻片的计算图像分析我们将使用显着图和
基因相关性分析通过可视化对我们的预测至关重要的组织特征来验证我们的模型
在目标 2 中,我们将生成模型并识别与这些特征相关的特定转录组变化。
通过整合从组织学中提取的深层特征,建立克罗恩病的临床相关预测模型
此外,我们还将对作为标准临床护理一部分收集的其他患者元数据进行图像分析。
已发布的克罗恩病预测模型的完整列表,用于衡量我们提出的性能的基准
最后,在目标 3 中,我们将使用尖端的单细胞 RNA 测序和空间。
转录组学方法阐明克罗恩病的转录组学特征并表征特异性
这些数据将提供与患病组织的标志性形态变化相关的遗传图谱。
研究克罗恩病和其他胃肠道疾病的亚型和临床结果的框架
疾病,从而推动个性化治疗和精准医疗的临床适应。
研究将提高诊断和预后信息的分辨率,以更好地管理克罗恩病
患者的疾病,并显着地将临床管理转向个体化治疗模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sana Syed其他文献
Sana Syed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sana Syed', 18)}}的其他基金
Population-Based Characterization of Metabolic Pathways to Predict Pediatric Crohn's Disease Outcomes
基于人群的代谢途径特征预测儿童克罗恩病结果
- 批准号:
10660989 - 财政年份:2022
- 资助金额:
$ 71.24万 - 项目类别:
Population-Based Characterization of Metabolic Pathways to Predict Pediatric Crohn's Disease Outcomes
基于人群的代谢途径特征预测儿童克罗恩病结果
- 批准号:
10418965 - 财政年份:2022
- 资助金额:
$ 71.24万 - 项目类别:
Computational Characterization of Environmental Enteropathy
环境性肠病的计算表征
- 批准号:
10164762 - 财政年份:2019
- 资助金额:
$ 71.24万 - 项目类别:
Computational Characterization of Environmental Enteropathy
环境性肠病的计算表征
- 批准号:
10413870 - 财政年份:2019
- 资助金额:
$ 71.24万 - 项目类别:
Computational Characterization of Environmental Enteropathy
环境性肠病的计算表征
- 批准号:
10627838 - 财政年份:2019
- 资助金额:
$ 71.24万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
- 批准号:
10656807 - 财政年份:2023
- 资助金额:
$ 71.24万 - 项目类别:
Polygenic risk stratification combined with mpMRI to identify clinically relevant prostate cancer
多基因风险分层结合 mpMRI 来识别临床相关的前列腺癌
- 批准号:
10610626 - 财政年份:2023
- 资助金额:
$ 71.24万 - 项目类别:
Improving Lipid Management Strategies in Young Adults
改善年轻人的血脂管理策略
- 批准号:
10639036 - 财政年份:2023
- 资助金额:
$ 71.24万 - 项目类别:
Implementing and Evaluating the Cancer Tracking System (CATSystem): A systems level intervention to improve Cervical Cancer screening, treatment referral and follow up in Kenya
实施和评估癌症追踪系统 (CATSystem):系统级干预措施,旨在改善肯尼亚的宫颈癌筛查、治疗转诊和随访
- 批准号:
10762689 - 财政年份:2023
- 资助金额:
$ 71.24万 - 项目类别:
Leveraging Pathogen-Host Networks to Identify Virus-specific and Estradiol-regulated Mechanisms during Respiratory Infection
利用病原体宿主网络来识别呼吸道感染期间的病毒特异性和雌二醇调节机制
- 批准号:
10741119 - 财政年份:2023
- 资助金额:
$ 71.24万 - 项目类别: