Non-cyp51A-mutation Mediated Triazole Resistance in Aspergillus fumigatus
非 cyp51A 突变介导的烟曲霉三唑耐药性
基本信息
- 批准号:10582526
- 负责人:
- 金额:$ 65.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-hydroxy-3-methylglutaryl-coenzyme AAddressAffectAllelesAnabolismAntifungal AgentsAntifungal TherapyAspergillosisAspergillusAspergillus fumigatusAutomobile DrivingAzole resistanceAzolesCRISPR/Cas technologyClinicalCollectionComplexCoupledDNA Sequence AlterationDataDiagnosisDiffusionDiseaseDrug TransportEnsureErgosterolEvolutionExhibitsFungal Drug ResistanceGene Expression ProfileGene Expression ProfilingGenesGeneticGenomeGenomicsGoalsImmunocompromised HostIn VitroIndividualInfectionKnowledgeLaboratoriesMediatingMethodsMoldsMolecularMolecular AnalysisMorbidity - disease rateMutationOutcomeOxidoreductasePathway interactionsPlayPredispositionProteinsRegulationResearchResistanceResistance developmentResistance profileRiskRoleSequence AnalysisSterol Biosynthesis PathwaySterolsSystemTechniquesTestingTherapeuticTranscriptional ActivationTranslatingTreatment FailureVoriconazoleWorkclinical predictorsclinically relevantdifferential expressioneffective therapyenzyme biosynthesisexperimental studygenetic analysisgenetic manipulationgenome analysishuman pathogenimprovedinhibitorinnovationinsightmortalitymutantnovelnovel strategiesoverexpressionpatient populationpreventpublic health relevanceresistance mechanismresistance mutationresistant Aspergillusstemtreatment choicewhole genome
项目摘要
A critical barrier to overcoming triazole resistance in Aspergillus fumigatus is the significant lack of
understanding of its genetic and molecular basis. We have shown that the known mechanisms of resistance do
not fully explain resistance observed among most clinical isolates. Our long-term goal is to improve antifungal
therapy and ensure the sustained clinical utility of the triazole class for treatment of infections caused by
Aspergillus species. Our central hypothesis is that non-cyp51A-mutation mediated mechanisms are essential
to triazole resistance in clinical isolates of A. fumigatus and involve complex genetic changes altering 1) sterol
biosynthesis and its transcriptional activation, 2) triazole transport and its transcriptional activation, and 3) as yet
unknown mechanisms. Our current objective is to address critical knowledge gaps by identifying the genetic
and molecular determinants of non-cyp51A-mutation mediated resistance. Our preliminary data suggest that
while mutations in cyp51A among triazole resistant clinical isolates are common, their overall contribution to
resistance is minimal. We have observed mutations, unique to resistant isolates in our collection, in genes
encoding sterol sensing proteins, regulators of sterol biosynthesis, and sterol biosynthesis enzymes. We have
also observed clinical isolates that overexpress not only cyp51A, but most genes of the ergosterol biosynthesis
pathway, suggesting its constitutive activation. We have observed several potential transporters that are up-
regulated among triazole resistant isolates in our collection, suggesting a role for triazole efflux and resistance
by these transporters. We have also shown that clinical isolates of A. fumigatus take up triazole antifungals via
facilitated diffusion and we believe that altered triazole import may represent an important mechanism of
resistance. To accomplish our objective we will undertake experiments that will lead to an understanding of what
genetic and molecular determinants influence triazole susceptibility through altered sterol biosynthesis or its
transcriptional activation (Aim 1) and triazole transport and its regulation (Aim 2). In Aim 3, we will also utilize an
unbiased whole genome comparisons, coupled with in vitro evolution experiments, to identify completely novel
mechanisms of resistance in clinical isolates. Our approach is innovative as we will use the latest genetic and
genomic techniques to study and discover novel non-cyp51A-mutation mediated mechanisms of triazole
resistance that are operative in a U.S.-based collection of triazole resistant clinical isolates. The proposed
research is significant as it represents a comprehensive analysis of the molecular and genetic basis of non-
cyp51A-mutation mediated triazole resistance in A. fumigatus and will provide novel insights into ways in which
triazole activity can be improved against this important human pathogen.
烟曲霉克服三唑耐药性的一个关键障碍是严重缺乏
了解其遗传和分子基础。我们已经表明,已知的耐药机制确实
不能完全解释大多数临床分离株中观察到的耐药性。我们的长期目标是提高抗真菌能力
治疗并确保三唑类药物在治疗由以下原因引起的感染方面的持续临床效用
曲霉属物种。我们的中心假设是非 cyp51A 突变介导的机制是必不可少的
烟曲霉临床分离株对三唑耐药,涉及复杂的遗传变化,改变 1) 甾醇
生物合成及其转录激活,2) 三唑转运及其转录激活,以及 3) 目前为止
未知的机制。我们当前的目标是通过识别遗传因素来解决关键的知识差距
和非 cyp51A 突变介导的耐药性的分子决定因素。我们的初步数据表明
虽然 cyp51A 突变在三唑耐药临床分离株中很常见,但它们对
阻力很小。我们观察到了我们收集的抗性分离株特有的基因突变
编码甾醇传感蛋白、甾醇生物合成调节剂和甾醇生物合成酶。我们有
还观察到临床分离株不仅过度表达 cyp51A,而且过度表达麦角甾醇生物合成的大多数基因
途径,表明其组成型激活。我们观察到几个潜在的转运蛋白正在上升-
在我们收集的三唑耐药分离株中受到调节,表明三唑外流和耐药性的作用
由这些运输商。我们还表明,烟曲霉的临床分离株通过吸收三唑类抗真菌药物
促进扩散,我们认为改变三唑进口可能代表了一种重要的机制
反抗。为了实现我们的目标,我们将进行实验来了解什么
遗传和分子决定因素通过改变甾醇生物合成或其代谢影响三唑敏感性
转录激活(目标 1)和三唑转运及其调节(目标 2)。在目标 3 中,我们还将利用
无偏见的全基因组比较,加上体外进化实验,以确定完全新颖的
临床分离株的耐药机制。我们的方法是创新的,因为我们将使用最新的遗传和
基因组技术研究和发现新的非 cyp51A 突变介导的三唑机制
在美国的三唑耐药临床分离株中发挥作用的耐药性。拟议的
研究意义重大,因为它代表了对非遗传性疾病的分子和遗传基础的全面分析。
cyp51A 突变介导烟曲霉的三唑抗性,并将提供新的见解
可以提高三唑对这种重要人类病原体的活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jarrod R. Fortwendel其他文献
Jarrod R. Fortwendel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jarrod R. Fortwendel', 18)}}的其他基金
Genetic Determinants of Aspergillus host-pathogen interactions
曲霉菌宿主-病原体相互作用的遗传决定因素
- 批准号:
10724816 - 财政年份:2023
- 资助金额:
$ 65.73万 - 项目类别:
Unlocking the cidal activity of echinocandins against Aspergillus fumigatus
解锁棘白菌素对烟曲霉的杀灭活性
- 批准号:
10179720 - 财政年份:2021
- 资助金额:
$ 65.73万 - 项目类别:
Unlocking the cidal activity of echinocandins against Aspergillus fumigatus
解锁棘白菌素对烟曲霉的杀灭活性
- 批准号:
10590730 - 财政年份:2021
- 资助金额:
$ 65.73万 - 项目类别:
Unlocking the cidal activity of echinocandins against Aspergillus fumigatus
解锁棘白菌素对烟曲霉的杀灭活性
- 批准号:
10378147 - 财政年份:2021
- 资助金额:
$ 65.73万 - 项目类别:
Non-cyp51A-mutation Mediated Triazole Resistance in Aspergillus fumigatus
非 cyp51A 突变介导的烟曲霉三唑耐药性
- 批准号:
9913275 - 财政年份:2020
- 资助金额:
$ 65.73万 - 项目类别:
Non-cyp51A-mutation Mediated Triazole Resistance in Aspergillus fumigatus
非 cyp51A 突变介导的烟曲霉三唑耐药性
- 批准号:
10358515 - 财政年份:2020
- 资助金额:
$ 65.73万 - 项目类别:
Fungal Ras-mediated invasive growth mechanisms
真菌 Ras 介导的侵袭性生长机制
- 批准号:
8696215 - 财政年份:2014
- 资助金额:
$ 65.73万 - 项目类别:
Fungal Ras-mediated invasive growth mechanisms
真菌 Ras 介导的侵袭性生长机制
- 批准号:
9205482 - 财政年份:2014
- 资助金额:
$ 65.73万 - 项目类别:
Fungal Ras-mediated invasive growth mechanisms
真菌 Ras 介导的侵袭性生长机制
- 批准号:
8806512 - 财政年份:2014
- 资助金额:
$ 65.73万 - 项目类别:
Fungal Ras-mediated invasive growth mechanisms
真菌 Ras 介导的侵袭性生长机制
- 批准号:
9282239 - 财政年份:2014
- 资助金额:
$ 65.73万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fixed-Target Platforms for Time-Resolved Crystallography
用于时间分辨晶体学的固定目标平台
- 批准号:
10634328 - 财政年份:2023
- 资助金额:
$ 65.73万 - 项目类别:
Regulation of Mitochondrial Metabolism by Post-Translational Modifications
翻译后修饰对线粒体代谢的调节
- 批准号:
8482787 - 财政年份:2013
- 资助金额:
$ 65.73万 - 项目类别:
Regulation of Mitochondrial Metabolism by Post-Translational Modifications
翻译后修饰对线粒体代谢的调节
- 批准号:
9262822 - 财政年份:2013
- 资助金额:
$ 65.73万 - 项目类别: