An innovative metabolic engineering strategy for the discovery of novel macrolide antibiotics
用于发现新型大环内酯类抗生素的创新代谢工程策略
基本信息
- 批准号:9136308
- 负责人:
- 金额:$ 22.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-17 至 2018-02-16
- 项目状态:已结题
- 来源:
- 关键词:AffectAgreementAnabolismAnimal ModelAnimalsAnti-Bacterial AgentsAnti-Infective AgentsAntibioticsAntifungal AgentsAreaAzithromycinBacterial InfectionsBiological SciencesBiotechnologyChemicalsChemistryClarithromycinClinicClinicalClinical TreatmentComplexConsultCytochrome P450DevelopmentDrug resistanceEngineeringEpoxy CompoundsErythromycinEvaluationFamilyFermentationFoundationsGenerationsGenesGeneticGenetic EngineeringGenomicsGram-Negative Bacterial InfectionsHumanHybridsHydroxyl RadicalIn VitroInvestigationKetolidesLeadLegal patentLicensingMacrolide AntibioticsMacrolide-resistanceMacrolidesMalignant NeoplasmsMedicalMichiganMicromonosporaMinimum Inhibitory Concentration measurementMixed Function OxygenasesMono-SMulti-Drug ResistanceNatural ProductsPathway interactionsPatternPharmaceutical ChemistryPharmacologic SubstancePhaseProductionPropertyPublic HealthResearchResearch ActivityResistanceRespiratory Tract InfectionsSeriesSilverSmall Business Innovation Research GrantStreptomycesStructure-Activity RelationshipTechnologyTherapeuticToxic effectTylosinUnited StatesWorkanalogantimicrobialbacterial resistancebasecombatcommercial applicationcommercializationdrug developmentdrug discoverydrug resistant bacteriainfectious disease treatmentinnovationinnovative technologiesinterestlarge scale productionmetabolic engineeringmicroorganismnew therapeutic targetnext generationnoveloxidationpathogenphase 1 studypre-clinicalpublic health relevanceresearch and developmentresistance mechanismresistant strainrespiratoryscaffoldsuccesssynthetic biology
项目摘要
DESCRIPTION (provided by applicant): The rapid emergence of multi-drug resistant pathogenic microorganisms represents a major threat to public health, placing an ever-increasing demand for the discovery of new antibacterial agents. Macrolide antibiotics, such as the 14-membered macrolide erythromycin and second-generation analogs clarithromycin and azithromycin, are among the first line therapies clinically employed to treat respiratory tract infections. However, as a consequence of the clinical overuse of these agents, macrolide resistance mechanisms have rapidly emerged. In contrast, 16-membered macrolides have demonstrated the capability of overcoming resistance mechanisms that affect 14- and 15-membered macrolides. Indeed, a few select 16- membered macrolides have been successfully employed in the clinical treatment of bacterial infections outside of the United States. Despite their demonstrated potential, however, 16-membered macrolides still remain underexplored in the development of new human antibacterial agents. The tylosin biosynthetic pathway produces a series of 16-membered macrolides, of which the veterinary therapeutic tylosin is best known. In this SBIR proposal, Alluvium Biosciences proposes to genetically engineer the tylosin biosynthetic pathway to enable the production of novel 16-membered macrolide compounds for application in new antibiotic drug discovery. In this effort, a genetically engineered Streptomyces
fradiae strain will be generated via genomic integration of the heterologous cytochrome P450 monooxygenase, mycG. This cytochrome P450 is native to the mycinamicin biosynthetic pathway that is responsible for the production of the mycinamicin family of 16- membered macrolides in Micromonospora griseorubida. It has previously been established that during the biosynthesis of the mycinamicins, MycG activity installs a regio- and stereospecific hydroxyl and/or epoxide functionality onto the mycinamicin core scaffold, resulting in both mono and di-oxidized bioactive compounds. It is established that this oxidative functionality is critical for mycinamicin bioactivity. Based on preliminary work, Alluvium expects that the engineered S. fradiae strain will be capable of producing hybrid tylosin-based analogs featuring an oxidation pattern similar to that observed in the mycinamicin family of macrolides. As it is known that the regio- and stereospecific oxidative functionalities can influence the bioactivity of macrolide compounds, Alluvium hypothesizes that the novel 16-membered macrolides will display potency against macrolide resistant bacterial pathogens. Accordingly, in vitro evaluation of antibacterial activities against a series of bacterial strains, including those that display macrolide resistance will be performed within this initial Phase I study. If the hypothesis is supported, compounds demonstrating promising activity will proceed to Phase II R&D wherein Alluvium will pursue medicinal chemistry efforts in order to optimize pharmacological properties and establish a lead macrolide antibiotic candidate.
描述(由申请人提供):多重耐药病原微生物的迅速出现对公众健康构成了重大威胁,对发现新的抗菌药物(例如14元大环内酯红霉素)的需求不断增加。克拉霉素和第二代类似物克拉霉素和阿奇霉素是临床上用于治疗呼吸道感染的一线疗法。由于临床上过度使用这些药物,大环内酯类耐药机制迅速出现。相反,16 元大环内酯类药物已证明能够克服影响 14 元和 15 元大环内酯类药物的耐药机制。大环内酯类药物已在美国以外的地区成功用于细菌感染的临床治疗,然而,尽管 16 元大环内酯类药物已被证明具有潜力,但它在新人类药物的开发中仍处于探索阶段。泰乐菌素生物合成途径产生一系列 16 元大环内酯,其中最著名的是兽医治疗用泰乐菌素。在这项 SBIR 提案中,Alluvium Biosciences 提议对泰乐菌素生物合成途径进行基因改造,以实现新型 16 元大环内酯的生产。用于新抗生素药物发现的大环内酯化合物在这项工作中,采用了基因工程链霉菌。
fradiae 菌株将通过异源细胞色素 P450 单加氧酶 mycG 的基因组整合而产生。该细胞色素 P450 是霉素生物合成途径的天然产物,该途径负责在灰红小单孢菌中产生 16 元大环内酯类化合物的霉素家族。确定在霉素生物合成过程中,MycG 活性安装了一个区域-根据初步工作,Alluvium 预计,这种氧化功能对于霉素的生物活性至关重要。 fradiae 菌株将能够产生基于泰乐菌素的杂化类似物,其氧化模式与大环内酯类霉素家族中观察到的氧化模式相似。由于区域和立体特异性氧化官能团可以影响大环内酯类化合物的生物活性,Alluvium 认为新型 16 元大环内酯类化合物将显示出对抗大环内酯类耐药细菌病原体的效力,因此,对一系列细菌菌株(包括那些菌株)的抗菌活性进行了体外评估。显示大环内酯类药物耐药性的研究将在最初的第一阶段研究中进行,如果该假设得到支持,证明有前景的活性将进入第二阶段研发。为了优化药理特性并建立主要的大环内酯类抗生素候选药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey David Kittendorf其他文献
Jeffrey David Kittendorf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey David Kittendorf', 18)}}的其他基金
A genetic engineering strategy for the improved production of the anti-helminthic
提高抗蠕虫药物生产的基因工程策略
- 批准号:
8393663 - 财政年份:2012
- 资助金额:
$ 22.49万 - 项目类别:
A novel biosynthetic strategy for the production of a key cryptophycin precursor
用于生产关键隐藻素前体的新型生物合成策略
- 批准号:
7998692 - 财政年份:2010
- 资助金额:
$ 22.49万 - 项目类别:
相似国自然基金
基于无源反向散射的跨协议融合与通感增强技术研究
- 批准号:62302383
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于事件逻辑理论的安全协议实施安全性形式化分析与验证
- 批准号:62362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
融合无线自组网的区块链协议研究
- 批准号:62302266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理设备与通信信道特征融合的协同内生安全模型及协议
- 批准号:62361010
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
- 批准号:
10672366 - 财政年份:2022
- 资助金额:
$ 22.49万 - 项目类别:
Abnormal cytokine response and autoantigen production in IgA-producing subpopulations in IgA nephropathy
IgA 肾病中 IgA 产生亚群的异常细胞因子反应和自身抗原产生
- 批准号:
9807239 - 财政年份:2019
- 资助金额:
$ 22.49万 - 项目类别:
Estrogens, androgens, aging, and bone loss in males
男性雌激素、雄激素、衰老和骨质流失
- 批准号:
8244288 - 财政年份:2012
- 资助金额:
$ 22.49万 - 项目类别:
Estrogens, androgens, aging, and bone loss in males
男性雌激素、雄激素、衰老和骨质流失
- 批准号:
8413601 - 财政年份:2012
- 资助金额:
$ 22.49万 - 项目类别:
Estrogens, androgens, aging, and bone loss in males
男性雌激素、雄激素、衰老和骨质流失
- 批准号:
8598056 - 财政年份:2012
- 资助金额:
$ 22.49万 - 项目类别: