Decoding the Molecular and Cellular Mechanisms of Mutant KRAS-driven Brain Arteriovenous Malformations
解读突变 KRAS 驱动的脑动静脉畸形的分子和细胞机制
基本信息
- 批准号:10584546
- 负责人:
- 金额:$ 64.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnatomyAngiogenic FactorAnimal Disease ModelsAnimal ModelArteriesBehavioral AssayBiologyBlood VesselsBlood capillariesBlood flowBrain NeoplasmsBrain hemorrhageCell Culture TechniquesCell ShapeCellsCellular biologyCentral Nervous SystemCerebral cortexCessation of lifeChildClinicalCognitionCognitiveCuesCultured CellsCytoskeletonDataDevelopmentDiagnosisDiameterDiseaseDown-RegulationEndothelial CellsEndotheliumEtiologyEventExtracellular MatrixFDA approvedFamily history ofFrequenciesGTP BindingGene ExpressionGene Expression ProfilingGenesGeneticGenetic TranscriptionGoalsGuanosine Triphosphate PhosphohydrolasesHemorrhageHistologicHistologyHomeostasisHumanHypertensionHypoxiaImageImmunohistochemistryIn VitroInterventionKRAS2 geneKnowledgeLabelLearningLesionMEK inhibitionMEKsMaintenanceMedicalMinorityMitogen-Activated Protein KinasesModalityModelingMolecularMolecular TargetMonomeric GTP-Binding ProteinsMorbidity - disease rateMorphologyMovementMusMutationNeurofibrillary TanglesOperative Surgical ProceduresPathogenesisPathologicPathway interactionsPatient-Focused OutcomesPatientsPericytesPharmaceutical PreparationsPhenotypePre-Clinical ModelPredispositionProcessPublishingRadiationResistanceRiskRuptureSamplingSeverity of illnessShunt DeviceSignal TransductionSmooth Muscle MyocytesStressStrokeTestingTherapeutic EmbolizationTimeVascular Smooth MuscleVascular remodelingVeinsZebrafishbrain arteriovenous malformationscadherin 5cell behaviordesigndisability riskexome sequencingfeedingfunctional disabilityhemodynamicshigh riskimprovedin vivoinhibitorinsightmalformationmosaicmutantneuron lossnovelnovel therapeuticsoptogeneticspharmacologicpreventrecruitresponsesensorshear stresssingle-cell RNA sequencingsurgical risktherapeutic targettranscriptomicsvascular bedyoung adult
项目摘要
SUMMARY
Brain arteriovenous malformations (bAVMs) are composed of abnormal connections between arteries and veins
that lack an intervening capillary network. As a result, high-pressure blood from feeding arteries shunts directly
into veins. These vascular lesions become distended and highly remodeled, resulting in a tangle of enlarged
blood vessels that are prone to rupture. Indeed, bAVMs are a leading cause of hemorrhagic stroke in children
and young adults. All current treatment modalities for bAVMs, including surgery, embolization or radiation carry
a significant risk of disability or death, and these options are not available for ~20% of bAVM patients due to
excessive risk. Because of these complications, alternative medical strategies with lower morbidities such as
targeted pharmacological therapies are desperately needed. However, we first need a clear understanding of
the biology underlying bAVM development and maintenance. The majority of bAVMs occur sporadically without
a family history of the disease. Using whole exome sequencing, we recently identified somatic, activating
mutations in the KRAS gene, which encodes a GTPase that is involved in signal transduction. The identified
mutations were confined to the endothelium and result in KRAS being locked in a GTP-bound ‘ON’ state. Notably,
we have established mouse and zebrafish models of endothelial-specific expression of mutant KRAS, which
have revealed the sufficiency for these genetic lesions to drive disease. We have gone on to demonstrate,
through transcriptional profiling of cultured cells and in vivo studies in zebrafish expressing mutant KRAS, that
many KRAS-induced molecular and cellular changes require MEK/ERK activity. Much remains to be learned
regarding the etiology of sporadic bAVMs and our cell culture, mouse and zebrafish models will enable us to
define the molecular, cellular and morphological changes that are involved in the initiation and maintenance of
bAVMs. We will utilize our expertise in animal models of bAVMs, imaging, cell biology, signaling and single-cell
RNA sequencing, to gain unprecedented insight into the bAVM disease process. This information will be
leveraged for the design of pharmacological interventions to improve patient outcomes. Our proposal will: 1)
define the threshold of KRAS mutant endothelial cells that can remodel vessels, 2) identify the vascular bed(s)
that are susceptible to active KRAS expression, 3) determine how KRAS mutations impact hemodynamic
signaling and bAVM progression, 4) uncover the cell-autonomous and non-cell autonomous mechanisms of
mutant KRAS, and 4) determine the requirement for KRAS and MEK activation for bAVM maintenance in our
pre-clinical models. Together, these studies will expand our understanding of bAVM pathogenesis and will
assess whether inhibition of the KRAS/MEK pathway may be a viable therapeutic target to pursue in human
patients with bAVM.
概括
脑动静脉畸形 (bAVM) 由动脉和静脉之间的异常连接组成
缺乏介入的毛细血管网络,因此,来自供血动脉的高压血液直接分流。
这些血管病变变得扩张并高度重塑,导致扩大的缠结。
事实上,脑动静脉畸形是儿童出血性中风的主要原因。
目前所有治疗 bAVM 的方法,包括手术、栓塞或放射治疗。
残疾或死亡的重大风险,并且由于以下原因,这些选择不适用于约 20% 的 bAVM 患者
由于这些并发症,需要采用发病率较低的替代医疗策略,例如
迫切需要靶向药物治疗。然而,我们首先需要清楚地了解。
bAVM 发展和维持的生物学基础 大多数 bAVM 都是零星发生的,而没有发生。
通过全外显子组测序,我们最近发现了该疾病的家族史。
KRAS 基因发生突变,该基因编码参与信号转导的 GTP 酶。
突变仅限于内皮细胞,导致 KRAS 被锁定在 GTP 结合的“ON”状态。
我们建立了突变型 KRAS 内皮特异性表达的小鼠和斑马鱼模型,
我们已经揭示了这些基因损伤足以导致疾病。
通过培养细胞的转录分析和表达突变型 KRAS 的斑马鱼的体内研究,
许多 KRAS 诱导的分子和细胞变化需要 MEK/ERK 活性,还有很多需要了解的地方。
关于散发性 bAVM 的病因学和我们的细胞培养,小鼠和斑马鱼模型将使我们能够
定义参与启动和维持的分子、细胞和形态变化
我们将利用我们在 bAVM 动物模型、成像、细胞生物学、信号传导和单细胞方面的专业知识。
RNA 测序,以获得对 bAVM 疾病过程的前所未有的了解。
我们的建议将用于设计药物干预措施以改善患者的治疗结果。
定义可重塑血管的 KRAS 突变内皮细胞的阈值,2) 识别血管床
对活跃的 KRAS 表达敏感,3) 确定 KRAS 突变如何影响血流动力学
信号传导和 bAVM 进展,4) 揭示细胞自主和非细胞自主机制
突变的 KRAS,以及 4) 确定我们的 bAVM 维护所需的 KRAS 和 MEK 激活
这些研究将共同扩展我们对 bAVM 发病机制的理解,并将扩大我们对 bAVM 发病机制的理解。
评估 KRAS/MEK 通路的抑制是否可能成为人类可行的治疗靶点
bAVM 患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Fish其他文献
Jason Fish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Fish', 18)}}的其他基金
Decoding the Molecular and Cellular Mechanisms of Mutant KRAS-driven Brain Arteriovenous Malformations
解读突变 KRAS 驱动的脑动静脉畸形的分子和细胞机制
- 批准号:
10446836 - 财政年份:2022
- 资助金额:
$ 64.49万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Imaging the Impact of Childhood Epilepsy on Memory Development - Supplement
想象儿童癫痫对记忆发展的影响 - 补充
- 批准号:
10819051 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
VTA dopamine connectivity and functional responses to drugs of abuse
VTA 多巴胺连接和对滥用药物的功能反应
- 批准号:
10665966 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别: