Robust Learning Approaches for Assessing Effects and Effect Heterogeneity of Real World Antipsychotic Treatment Regimes in Elderly Persons with Schizophrenia
用于评估现实世界抗精神病药物治疗方案对老年精神分裂症患者的效果和效果异质性的稳健学习方法
基本信息
- 批准号:10584971
- 负责人:
- 金额:$ 86.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2027-10-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdherenceAdultAffectAgeAntipsychotic AgentsAreaBenefits and RisksCaringChronicChronic DiseaseClinicalClinical TrialsCognition DisordersComplexCrimeDataDatabasesDependenceDiagnosisDoseDrug PrescriptionsDrug usageEconomicsEffectivenessElderlyEnvironmentEquilibriumEthnic OriginEthnic PopulationExposure toFaceFinancial costGeographyHealth behaviorHeterogeneityHouseholdIncomeIndividualInsurance CarriersInterruptionLearningLinkLow incomeMachine LearningMaintenanceMedicalMedicareMedicare/MedicaidMethodsModelingNational Institute of Mental HealthOutcomeOutcome AssessmentPatient-Focused OutcomesPatientsPersonsPharmaceutical PreparationsPharmacotherapyPhasePopulationPrevalenceProbabilityRaceRegimenResearch PersonnelRiskRoleSafetySchizophreniaSocial EnvironmentStatistical MethodsStrategic PlanningSubgroupTimeTranslatingTreatment EffectivenessTreatment ProtocolsTreatment outcomeTreesVariantVulnerable PopulationsWorkadverse outcomeage groupagedbeneficiaryburden of illnesscohortcommon treatmentcomorbiditycontextual factorscostdisabilitydisability-adjusted life yearsdisparity reductioneffectiveness outcomeefficacy trialethnic diversityethnic minority populationhealth care availabilityhigh dimensionalityhuman old age (65+)improvedindexinginterestlongitudinal databaselongitudinal datasetmedication compliancenovelolder patientoutcome disparitiespublic health relevanceracial diversityracial minority populationracial populationrandomized trialsafety outcomessemiparametricsocialsocial disparitiessocial health determinantstreatment adherencetreatment as usualtreatment comparisontreatment disparitytreatment effecttreatment patterntreatment risk
项目摘要
Project Summary
Availability of large longitudinal datasets describing elderly populations with schizophrenia treated in usual care
settings present opportunities to expand the limited evidence on outcomes of antipsychotic drug treatment for
this population and to learn what works in the real world: which drugs, in what sequence, combination, or
intensity, for whom (what racial/ethnic groups, in what social circumstances), and at what risk. While this
objective is not new, advances in machine learning and causal inference could improve inferences, and thus
generate evidence to answer these questions. Leveraging data generated in usual care settings, we will (a)
translate novel statistical methods to assure distributional balance on observed confounders using high-
dimensional longitudinal data with multiple competing antipsychotic drugs (multi-valued treatments) and
longitudinal treatment patterns (treatment regimens); (b) utilize robust non-parametric or semi-parametric
methods; and (c) extend tree-based approaches to simultaneously model effectiveness and safety outcomes to
fill evidence gaps. We will link racially/ethnically diverse cohorts of elderly publicly-insured adults with
schizophrenia utilizing antipsychotics to geographical indicators of social contextual factors– upstream social
determinants of health (SDH) such as household income and crime rates— that are known to influence
treatment adherence and other health behaviors. Aim 1 applies causal effect estimation of the index
antipsychotic drug prescribed using weighted semi-parametric or non-parametric methods that (a) depend on
high-dimensional confounders and (b) may be moderated by patient race/ethnicity and area-level SDH. Aim 2
identifies and characterizes frequently observed treatment regimens that may differ by race/ethnicity and SDH.
Aim 3 estimates effectiveness and safety of the treatment regimens identifed in Aim 2, and determines if
race/ethnicity or SDH modify treatment effectiveness. Aim 4 estimates the impact of treatment regimens on
each individual effectiveness and safety outcome simultaneously, making use of within-patient outcome
dependencies. Our proposal has high
项目概要
描述接受常规护理治疗的精神分裂症老年人群的大型纵向数据集的可用性
环境提供了扩大关于抗精神病药物治疗结果的有限证据的机会
并了解哪些药物在现实世界中有效:哪些药物、以什么顺序、组合或
强度、针对谁(什么种族/族裔群体、在什么社会环境下)以及面临什么风险。
目标并不新鲜,机器学习和因果推理的进步可以改善推理,从而
利用日常护理环境中生成的数据来生成证据来回答这些问题,我们将 (a)
翻译新的统计方法,以确保使用高的观察到的混杂因素的分布平衡
多种竞争性抗精神病药物(多值治疗)的维度纵向数据以及
纵向治疗模式(治疗方案);(b)利用稳健的非参数或半参数
方法;(c) 扩展基于树的方法,以同时对有效性和安全性结果进行建模
我们将填补证据空白。
精神分裂症利用抗精神病药物来地理指标社会背景因素——上游社会
健康的决定因素 (SDH),例如家庭收入和犯罪率——已知会影响健康
目标 1 应用指数的因果效应估计。
使用加权半参数或非参数方法开出的抗精神病药物 (a) 取决于
高维混杂因素和 (b) 可能会受到患者种族/民族和地区级别 SDH 的影响。
识别和描述经常观察到的治疗方案,这些治疗方案可能因种族/民族和 SDH 而异。
目标 3 评估目标 2 中确定的治疗方案的有效性和安全性,并确定是否
目标 4 评估治疗方案对治疗效果的影响。
利用患者内部的结果,同时实现每个个体的有效性和安全性结果
我们的提案具有很高的依赖性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcela V Horvitz-Lennon其他文献
Marcela V Horvitz-Lennon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcela V Horvitz-Lennon', 18)}}的其他基金
Improving Minority Health by Monitoring Medicaid Quality, Disparities and Value
通过监测医疗补助质量、差异和价值来改善少数群体的健康
- 批准号:
10169888 - 财政年份:2017
- 资助金额:
$ 86.66万 - 项目类别:
Improving Minority Health by Monitoring Medicaid Quality, Disparities and Value
通过监测医疗补助质量、差异和价值来改善少数群体的健康
- 批准号:
9911999 - 财政年份:2017
- 资助金额:
$ 86.66万 - 项目类别:
Improving Value of Publicly Funded Mental Health Care
提高公共资助的精神卫生保健的价值
- 批准号:
9027083 - 财政年份:2016
- 资助金额:
$ 86.66万 - 项目类别:
Improving Value of Publicly Funded Mental Health Care
提高公共资助的精神卫生保健的价值
- 批准号:
9275022 - 财政年份:2016
- 资助金额:
$ 86.66万 - 项目类别:
An In-Depth Investigation of Racial & Ethnic Disparities in Schizophrenia Care
对种族的深入调查
- 批准号:
8139114 - 财政年份:2010
- 资助金额:
$ 86.66万 - 项目类别:
An In-Depth Investigation of Racial & Ethnic Disparities in Schizophrenia Care
对种族的深入调查
- 批准号:
8301733 - 财政年份:2010
- 资助金额:
$ 86.66万 - 项目类别:
An In-Depth Investigation of Racial & Ethnic Disparities in Schizophrenia Care
对种族的深入调查
- 批准号:
8519860 - 财政年份:2010
- 资助金额:
$ 86.66万 - 项目类别:
An In-Depth Investigation of Racial & Ethnic Disparities in Schizophrenia Care
对种族的深入调查
- 批准号:
7982863 - 财政年份:2010
- 资助金额:
$ 86.66万 - 项目类别:
相似国自然基金
基于前景理论的ADHD用药决策过程与用药依从性内在机制研究
- 批准号:72304279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
基于HAPA理论的PCI术后患者运动依从性驱动机制与干预方案构建研究
- 批准号:72304180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于健康行为程式模型提升高血压患者药物依从性的干预策略构建研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Phase I study of panobinostat in adults with sickle cell disease: novel approach to recruitment and retention
帕比司他治疗成人镰状细胞病的 I 期研究:招募和保留的新方法
- 批准号:
10420453 - 财政年份:2023
- 资助金额:
$ 86.66万 - 项目类别:
Developing a culturally adapted implementation program for teleophthalmology use in Latinx communities
制定适合拉丁裔社区远程眼科使用的文化适应实施计划
- 批准号:
10771837 - 财政年份:2023
- 资助金额:
$ 86.66万 - 项目类别:
Feasibility and Usability of a Spanish-Transcreated Pediatric Post-Transplant Adherence App (BMT4me)
西班牙翻译的儿科移植后依从性应用程序 (BMT4me) 的可行性和可用性
- 批准号:
10782256 - 财政年份:2023
- 资助金额:
$ 86.66万 - 项目类别:
Treatment Development for Smoking Cessation and Engagement in HIV/TB Care in South Africa
南非戒烟和参与艾滋病毒/结核病护理的治疗方法开发
- 批准号:
10706874 - 财政年份:2023
- 资助金额:
$ 86.66万 - 项目类别:
A Tailored mHealth Vaping Prevention Intervention for Adolescents with Congenital Heart Defects
针对先天性心脏病青少年的定制 mHealth 电子烟预防干预措施
- 批准号:
10739666 - 财政年份:2023
- 资助金额:
$ 86.66万 - 项目类别: