Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
基本信息
- 批准号:8689100
- 负责人:
- 金额:$ 26.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:ADRB2 geneAdrenergic ReceptorBehaviorBiophysicsCannabinoidsCell Signaling ProcessCollaborationsComputing MethodologiesDataDimerizationDrug TargetingElementsEventFamilyG-Protein-Coupled ReceptorsGTP-Binding ProteinsGoalsHuman GenomeHydration statusIntegral Membrane ProteinInvestmentsKnowledgeLeftLigand BindingLigandsMachine LearningMembrane ProteinsMethodsModelingMotionOpsinPattern RecognitionPharmaceutical PreparationsPharmacologic SubstancePlayProcessProtein BindingProtein FamilyProteinsReceptor ActivationResearchResearch PersonnelResolutionResourcesRetinalRhodopsinRoleRunningSeriesStagingStructureTechniquesTestingWaterWorkcostdesignfollow-upinhibitor/antagonistinsightinterestlaptopmammalian genomemetarhodopsin Imetarhodopsin IImolecular dynamicsmulti-scale modelingnetwork modelsnovelprotein structurereceptorreceptor functionresearch studysignal processingsimulationsupercomputertherapeutic development
项目摘要
DESCRIPTION (provided by applicant): The G protein-coupled receptors (GPCRs) are the largest family in the mammalian genome, and are critical to a number of cell signaling processes. As a result, they are of enormous biomedical importance; by some estimates, as many as 50% of new pharmaceuticals target GPCRs. Unsurprisingly, there has been a huge research investment in understanding their biophysics. However, integral membrane proteins are challenging to work with experimentally, leaving an opportunity for computational methods to make a significant contribution. We will use multiscale modeling techniques, including all-atom molecular dynamics simulations and elastic network models, to explore the behavior of several GPCRs, including rhodopsin (and its retinal-free form, opsin) and the ¿2-adrenergic receptor (B2AR). Specifically, we will investigate the role of ligand binding in modulating GPCR function, via two separate all-atom molecular dynamics calculations. Microsecond-scale simulations of opsin will, when contrasted with our previous work on rhodopsin in the dark state and during the early stages of activation, allow us to see which interactions in rhodopsin are determined by the presence of the ligand, while the planned simulations of the full activation process will give the first atomic-level view of the structural changes involved in GPCR activation; this knowledge could be critical to the design of novel inhibitors to other GPCRs. The second goal of this proposal is to clarify the role of internal waters in the activation mechanism of GPCRs; our previous simulations described significant increases in the internal hydration of rhodopsin and B2AR. Here, we propose to pursue those observations more rigorously, using automatic pattern recognition methods to correlate hydration changes with functionally interesting protein motions in simulations of rhodopsin, B2AR, and the cannabinoid-2 receptor (CB2). The third goal of the proposal is to develop elastic network models - a simple, computationally inexpensive approach where the protein's interactions are represented as a network of springs - in order to explore larger scale problems not readily amenable to all-atom molecular dynamics, like the modulation of protein motions by G protein binding and GPCR oligomerization. A number of possible network model implementations will be considered, and the models will be carefully validated by quantitative comparison to extensive molecular dynamics simulations, including those proposed for the first aim. The fourth and final goal of the proposal is to assess the validity of a common assumption, that rhodopsin is a good template for understanding GPCR activation in general. To test this hypothesis we will apply multiple computational methods, including long timescale molecular dynamics and elastic network models, to a series of GPCRs, including rhodopsin, opsin, B2AR, and CB2. We will quantitatively correlate the fluctuations of the different GPCRs, with the hypothesis that motions conserved across multiple GPCRs are likely to be functionally significant.
描述(由适用提供):G蛋白偶联受体(GPCR)是哺乳动物基因组中最大的家族,对许多细胞信号传导过程至关重要。结果,它们具有巨大的生物医学重要性。据某些估计,多达50%的新药靶向GPCR。毫不奇怪,在了解其生物物理学方面已经进行了巨大的研究投资。但是,整体膜蛋白要挑战实验合作,为计算方法提供了重大贡献的机会。我们将使用多尺度建模技术,包括全部原子分子动力学模拟和弹性网络模型,探索几种GPCR的行为,包括Rhodopsin(及其常规形式的OPSIN)和2-肾上腺素能受体(B2AR)。当与我们先前在黑暗状态下的视紫红质的工作以及在激活的早期阶段对比,对OPSIN的微秒尺度模拟将使我们可以查看Rhopopsin中的哪些相互作用是由配体的存在确定的,而全面激活过程的计划模拟将使GP CRCR的结构性更改涉及GP CRCR的第一个原子级别的视图,使得GP CR CPR激活;这些知识对于对其他GPCR的新型抑制剂的设计可能至关重要。该提案的第二个目标是阐明内部水在GPCR的激活机制中的作用。我们以前的模拟描述了视紫红质和B2AR的内部水合的显着增加。在这里,我们建议使用自动模式识别方法更严格地追求这些观察结果,以将水合作用的变化与动功能有趣的蛋白质运动相关联,在Rhodopsin,B2AR和Cannabinoid-2受体(CB2)的模拟中。该提案的第三个目标是开发弹性网络模型 - 一种简单的,计算上的廉价方法,蛋白质的相互作用表示为弹簧网络 - 以探索不容易被全部原子分子动力学的较大规模问题,例如G蛋白结合和GPCR寡聚的蛋白质运动的调节。将考虑许多可能的网络模型实现,并通过定量比较与广泛的分子动力学模拟(包括针对第一个目标提出的那些模拟)仔细验证这些模型。该提案的第四个也是最终目标是评估共同假设的有效性,即视紫红质是一般理解GPCR激活的良好模板。为了检验该假设,我们将应用多种计算方法,包括长时间分子动力学和弹性网络模型,包括一系列GPCR,包括Rhodopsin,Opsin,B2AR和CB2。我们将定量地将不同GPCR的波动与跨多个GPCR的运动的假设相关联可能在功能上很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Grossfield其他文献
Alan Grossfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Grossfield', 18)}}的其他基金
Developing computational methods to determine the thermodynamics of lipid phase coexistence
开发计算方法来确定脂相共存的热力学
- 批准号:
10042128 - 财政年份:2020
- 资助金额:
$ 26.27万 - 项目类别:
Developing computational methods to determine the thermodynamics of lipid phase coexistence
开发计算方法来确定脂相共存的热力学
- 批准号:
10204062 - 财政年份:2020
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8895982 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8020805 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8324207 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8502702 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Helix Packing and Ligand Binding in Dopamine Receptors
多巴胺受体中的螺旋堆积和配体结合
- 批准号:
6540537 - 财政年份:2002
- 资助金额:
$ 26.27万 - 项目类别:
Helix Packing and Ligand Binding in Dopamine Receptors
多巴胺受体中的螺旋堆积和配体结合
- 批准号:
6606961 - 财政年份:2002
- 资助金额:
$ 26.27万 - 项目类别:
Helix Packing and Ligand Binding in Dopamine Receptors
多巴胺受体中的螺旋堆积和配体结合
- 批准号:
6341406 - 财政年份:2001
- 资助金额:
$ 26.27万 - 项目类别:
相似国自然基金
内皮β3肾上腺素能受体调控线粒体功能参与血管衰老的作用研究
- 批准号:82370408
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肾上腺素能受体激动剂引起睑板腺功能障碍发病的机制研究
- 批准号:82371024
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心脏成纤维细胞β2-肾上腺素能受体对心衰小细胞外囊泡释放的作用机制研究
- 批准号:82370276
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
α1-和β3-肾上腺素能受体的荧光探针可视化研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
β2肾上腺素能受体调控皮肤角化细胞活化在慢性重叠型疼痛状态中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Nerve-stem cell interactions during skin homeostasis and wound repair
皮肤稳态和伤口修复过程中神经干细胞的相互作用
- 批准号:
10630294 - 财政年份:2021
- 资助金额:
$ 26.27万 - 项目类别:
Role of beta-adrenergic receptors in modulation of cognition and central and peripheral immune systems in Alzheimer's disease
β-肾上腺素能受体在阿尔茨海默病认知及中枢和外周免疫系统调节中的作用
- 批准号:
9383638 - 财政年份:2017
- 资助金额:
$ 26.27万 - 项目类别:
Role of beta adrenergic receptors in modulation of cognition, pathology and neuroinflammation in Alzheimer's Disease
β 肾上腺素能受体在阿尔茨海默病认知、病理和神经炎症调节中的作用
- 批准号:
9324078 - 财政年份:2016
- 资助金额:
$ 26.27万 - 项目类别:
Novel tools for investigating GPCR-mediated 14-3-3 signaling pathway
研究 GPCR 介导的 14-3-3 信号通路的新工具
- 批准号:
9048402 - 财政年份:2016
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8895982 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别: