A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
基本信息
- 批准号:10578721
- 负责人:
- 金额:$ 7.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAccountingAddressAdherenceAdultAdverse effectsAdverse eventAlgorithmsArchivesArea Under CurveBupropionCarbon MonoxideCessation of lifeCharacteristicsClinicClinicalClinical DataComplexComputer softwareDataData SetDevelopmentDiseaseFutureGoalsHeadHeterogeneityHigh PrevalenceIndividualMachine LearningMalignant NeoplasmsMeasuresModelingMulti-Institutional Clinical TrialOutcomeParticipantPatientsPerformancePersonsPharmaceutical PreparationsPharmacotherapyPlacebosPopulationPositioning AttributeProbabilityProviderRandomizedRandomized, Controlled TrialsRecommendationReproducibilitySamplingSerious Adverse EventSmokerSmokingSmoking Cessation InterventionStatistical ModelsSurveysTechniquesTestingTimeTranslatingTranslationsTreatment outcomeUncertaintyUnited StatesUnited States Food and Drug AdministrationWorkalcohol abstinencealcohol abuse therapyalcohol use disorderalternative treatmentburden of illnesscapsulecigarette smokingclinical decision supportflexibilityimplementation facilitationimprovedindividualized medicinemedication compliancemobile applicationnicotine replacementnovelnovel strategiespersonalized approachpersonalized medicinepillpredictive modelingprogramsprospectiveprototypepsychiatric comorbidityresponsesexside effectsmoking cessationstandard of carestatisticssuccesssupport toolstobacco smokerstooltreatment responseuptakevarenicline
项目摘要
PROJECT ABSTRACT
Cigarette smoking contributes to one-third of cancer deaths. Approximately 14% of adults in the United States
are current tobacco smokers. Though several Food and Drug Administration (FDA)-approved smoking cessation
pharmacotherapies exist [e.g., varenicline, bupropion, nicotine replacement therapy (NRT)], utilization rates
remain low and a substantial portion of smokers do not respond to existing treatments. A personalized treatment
recommendation in which smokers are provided with a smoking cessation pharmacotherapy based on their
individual characteristics may improve both utilization of FDA-approved smoking cessation pharmacotherapies
and quit success among smokers. Our goal is to develop an algorithm, based on demographic and clinical data
assessed prior to treatment, to estimate individual smokers' likely response to FDA-approved pharmacotherapies
for smoking cessation, including varenicline, bupropion, and nicotine replacement therapy (NRT). Models will
account for the likelihood of adverse effects of medication and non-adherence. Individual estimates of treatment
response will be obtained through sophisticated analytic modeling (e.g., machine learning techniques) of existing
data from a single, large-scale randomized controlled trial (EAGLES trial conducted by Pfizer and
GlaxoSmithKline, United States sample, N=4207). The EAGLES trial provides a rich dataset comparing three
FDA-approved medications head-to-head in a large and clinically representative sample. In the EAGLES trial,
participants were randomly assigned to receive varenicline (1 mg twice daily), bupropion (150 mg twice daily),
NRT patch (21 mg per day with taper), or placebo pill capsules/patches for 12 weeks. Smoking cessation
outcomes at weeks 9 through 12 were measured. We propose to use multiple statistical techniques (e.g.,
machine learning) to optimize a model for predicting an individual's likelihood of specific smoking cessation
success in response to each treatment. Consistent with the primary analyses in the EAGLES trial, we will define
treatment success as carbon monoxide-confirmed continuous abstinence during weeks 9 through 12.
Secondarily, we will also examine continuous abstinence during weeks 9 through 24. We will develop a patient
and provider-facing mobile app prototype that implements the best-fitting algorithm and prospectively predicts
new patients' likelihood of smoking cessation with various pharmacotherapies. The mobile app will allow a new
patient to complete a reduced set of assessments based on the predictors deemed relevant in the final model.
The development of an app prototype will position us to complete user testing and refinement in a future study.
Finally, we will develop a R package to facilitate implementation of similar models by statisticians working with
other disease data.
项目摘要
吸烟导致三分之一的癌症死亡。大约 14% 的美国成年人
是目前的吸烟者。尽管一些食品和药物管理局 (FDA) 批准戒烟
现有药物疗法 [例如伐尼克兰、安非他酮、尼古丁替代疗法 (NRT)]、利用率
仍然很低,而且很大一部分吸烟者对现有治疗没有反应。个性化治疗
建议根据吸烟者的情况提供戒烟药物治疗
个体特征可能会提高 FDA 批准的戒烟药物疗法的利用率
并在吸烟者中取得成功。我们的目标是开发一种基于人口统计和临床数据的算法
在治疗前进行评估,以估计个体吸烟者对 FDA 批准的药物疗法的可能反应
用于戒烟,包括伐尼克兰、安非他酮和尼古丁替代疗法 (NRT)。模型将
考虑药物不良反应和不依从的可能性。治疗的个人估计
响应将通过现有的复杂分析模型(例如机器学习技术)获得
数据来自一项大规模随机对照试验(辉瑞和辉瑞公司进行的 EAGLES 试验)
GlaxoSmithKline,美国样本,N=4207)。 EAGLES 试验提供了丰富的数据集,比较了三个
FDA 批准的药物在大量且具有临床代表性的样本中进行了正面对比。在 EAGLES 试验中,
参与者被随机分配接受伐尼克兰(1 毫克,每天两次)、安非他酮(150 毫克,每天两次)、
NRT 贴剂(每天 21 毫克,逐渐递减)或安慰剂药丸胶囊/贴剂,持续 12 周。戒烟
测量第 9 周至第 12 周的结果。我们建议使用多种统计技术(例如,
机器学习)优化模型来预测个人特定戒烟的可能性
对每次治疗的成功反应。与 EAGLES 试验中的主要分析一致,我们将定义
治疗成功,即在第 9 周至第 12 周内持续戒除一氧化碳。
其次,我们还将检查第 9 周至第 24 周期间的持续禁欲情况。我们将培养一名患者
和面向提供商的移动应用程序原型,该原型实现了最佳拟合算法并进行前瞻性预测
新患者通过各种药物疗法戒烟的可能性。该移动应用程序将允许新的
患者根据最终模型中认为相关的预测因素完成一组简化的评估。
应用程序原型的开发将使我们能够在未来的研究中完成用户测试和改进。
最后,我们将开发一个 R 包,以方便统计学家与其他人合作实施类似的模型
其他疾病数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Lynn Tomko其他文献
Rachel Lynn Tomko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Lynn Tomko', 18)}}的其他基金
A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
- 批准号:
10437438 - 财政年份:2022
- 资助金额:
$ 7.53万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
- 批准号:
10831206 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别:
Improving outcomes for substance-affected families in the child welfare system
改善儿童福利系统中受药物影响的家庭的成果
- 批准号:
10734742 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别:
Providing Tobacco Treatment to Patients Undergoing Lung Cancer Screening at MedStar Health: A Randomized Trial
为 MedStar Health 接受肺癌筛查的患者提供烟草治疗:一项随机试验
- 批准号:
10654115 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别:
2/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
2/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711336 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别: