The Effects of Glucokinase Polymerization During Metabolic Transitions
葡萄糖激酶聚合在代谢转变过程中的影响
基本信息
- 批准号:9129541
- 负责人:
- 金额:$ 3.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2018-07-14
- 项目状态:已结题
- 来源:
- 关键词:AccelerationActinsAffectAllosteric RegulationBiochemical PathwayBiochemistryBiologicalBiological AssayBiological ProcessCarbonCell DeathCell SurvivalCellsConflict (Psychology)ConsumptionCryoelectron MicroscopyDataDependenceDiabetes MellitusEnvironmentEnzymesEthanolFermentationFilamentFlow CytometryFluorescence Resonance Energy TransferGenesGeneticGlucokinaseGlucoseGlycolysisGoalsGrowthHomeostasisInvestmentsKineticsLeadLifeLigandsMalignant NeoplasmsMeasuresMetabolicMetabolismMicroscopyModelingNutrientPhase TransitionPhysiologicalPlayPolymersPopulationPost-Translational Protein ProcessingProductionProteinsProteolysisProteomeReporterRespirationRiskRoleSaccharomyces cerevisiaeSaccharomycetalesSite-Directed MutagenesisSourceStagingStructural ModelsStructureSubgroupTestingTimeVariantX-Ray CrystallographyYeastsalcohol exposurecell growthcell killingcell typeexperiencehexokinasemembermutantpolymerizationpressurepublic health relevanceresponsestructural biologywhole genome
项目摘要
DESCRIPTION (provided by applicant): The major goal of this project is to understand how metabolic networks are regulated in response to sudden changes in the concentration of environmental nutrients. While we have a good understanding of central carbon metabolism in various steady states, it is unclear how these metabolic networks adapt to maintain viability on timescales that are too short to alter the composition of the proteome. We focus on how the first step in glycolysis is regulated when cells growing slowly on ethanol are exposed to high enough glucose concentrations to induce the high flux through glycolysis that supports rapid, fermentative growth. Starting glycolysis too fast can deplete ATP and kill cells. Preliminary studies suggest that polymerization of a metabolic enzyme plays a crucial role in regulating the kinetics of this transition. We have found that Glucokinase-1 (Glk1), one of the three enzymes responsible for catalyzing the first step in glycolysis, forms linear polymers when respiring cells
encounter high glucose concentrations. Purified Glk1 forms polymers in the presence of glucose and ATP and polymerization inhibits Glk1's catalytic activity. Using genetics, we have demonstrated that deleting GLK1 reduces cell death but slows the acceleration of growth rate when respiring cells encounter glucose. Taking advantage of the conservation of glycolysis across all kingdoms of life, we will investigate the way that starved Saccharomyces cerevisiae's metabolism responds to sudden introduction into glucose-rich media as a tractable model for the general response to rapid increases in the environmental glucose concentration. We will tackle this problem at multiple scales: using a combination of genetics, biochemistry and microscopy to understand how Glk1 and its polymerization affect both glycolysis and cellular growth; using a combination of biochemistry and structural biology in order to elucidate how Glk1 polymerization reduces Glk1 enzymatic activity; and determining the conservation of these mechanisms.
描述(由适用提供):该项目的主要目标是了解如何根据环境养分浓度的突然变化来调节代谢网络。尽管我们对各种稳态中的中央碳代谢有很好的了解,但尚不清楚这些代谢网络如何适应可生存到太短而无法改变蛋白质组组成的时间尺度。当细胞在乙醇上缓慢生长时,如何调节糖酵解的第一步如何暴露于足够高的葡萄糖浓度,以通过支持快速,发酵生长的快速糖酵解诱导高通量。可以复制ATP并杀死细胞。初步研究表明,代谢酶的聚合在确定这种过渡的动力学方面起着至关重要的作用。我们发现,葡萄糖酶-1(GLK1)是负责催化糖酵解的第一步的三种酶之一,在呼吸细胞时形成线性聚合物
遇到高葡萄糖浓度。纯化的GLK1在葡萄糖和ATP存在下形成聚合物,聚合抑制GLK1的催化活性。使用遗传学,我们已经证明,删除GLK1可以减少细胞死亡,但在呼吸细胞遇到葡萄糖时会减慢生长速率的加速。利用在生活的所有王国中保存糖酵解,我们将研究饥饿的酿酒酵母对突然引入葡萄糖富含葡萄糖的培养基的代谢反应,作为对环境葡萄糖浓度快速增加的一般反应的一种可传输模型。我们将在多个尺度上解决这个问题:使用遗传学,生物化学和显微镜的组合来了解GLK1及其聚合如何影响糖酵解和细胞生长;使用生物化学和结构生物学的组合,以阐明GLK1聚合如何降低GLK1酶活性;并确定这些机制的保护。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
patrick renwick stoddard其他文献
patrick renwick stoddard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('patrick renwick stoddard', 18)}}的其他基金
The Effects of Glucokinase Polymerization During Metabolic Transitions
葡萄糖激酶聚合在代谢转变过程中的影响
- 批准号:
9304287 - 财政年份:2015
- 资助金额:
$ 3.14万 - 项目类别:
The Effects of Glucokinase Polymerization During Metabolic Transitions
葡萄糖激酶聚合在代谢转变过程中的影响
- 批准号:
8977704 - 财政年份:2015
- 资助金额:
$ 3.14万 - 项目类别:
相似海外基金
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Fibrosis, inflammation, and osteophyte formation in post-traumatic osteoarthritis
创伤后骨关节炎中的纤维化、炎症和骨赘形成
- 批准号:
10570315 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Role of C. elegans RAPGEF in Synapse Development at the Neuromuscular Junction
线虫 RAPGEF 在神经肌肉接头突触发育中的作用
- 批准号:
10676616 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Project 2 - Verification and Molecular Mechanisms of T1D Modifier Mutations
项目2-T1D修饰突变的验证和分子机制
- 批准号:
10642554 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别: