Bacterial polyphosphates in sepsis
败血症中的细菌多磷酸盐
基本信息
- 批准号:10573217
- 负责人:
- 金额:$ 53.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-22 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinity ChromatographyAgonistAlpha GranuleBacteremiaBacteriaBacterial InfectionsBinding ProteinsBiologicalBlood PlateletsBlood coagulationBradykininCellsCellular Indexing of Transcriptomes and Epitopes by SequencingChemicalsCoagulation ProcessColonComplement ActivationDataEnvironmentEscherichia coliEventFDA approvedFutureGlycolysisGnotobioticGrowthHeterogeneityHost DefenseHumanImmuneImmune responseImmunityIncubatedInfectionInflammationIntegration Host FactorsInterventionIntestinal MucosaInvadedKnowledgeLabelLengthLightLinkMacrophageMammalian CellMeasuresMediatingMetabolicMetabolismModelingMolecularMolecular ChaperonesMononuclearMorbidity - disease rateMucous MembraneMusNatural ImmunityNutrientOrganismOrthophosphateOutcomePathogenesisPatientsPeritonealPeritoneal SepsisPhagocytesPharmaceutical PreparationsPhenotypePolymersPolyphosphate kinasePolyphosphatesPreventionProductionProteinsProteomicsReactionRecombinantsReportingResearchResearch Project GrantsRoleSaccharomyces cerevisiaeSamplingSepsisSeveritiesShapesSignal PathwaySignal TransductionSourceSterilityStressSurrogate EndpointTLR4 geneTestingTherapeuticTitrationsWorkarginasebacterial metabolismcecal ligation puncturechemokinecytokinefightinghost-microbe interactionsimprovedinflammatory milieuinorganic phosphateinsightmast cellmonocytemortalitymutantneutrophilnovelpathogenpolymicrobial sepsisproteogenomicsrecruitresponseresponse to injurytranscriptome
项目摘要
Project Summary: Sepsis remains a leading cause of morbidity and mortality with almost 50 million cases per
year worldwide. In the absence of FDA-approved drugs, there is a high demand for better insights into the host-
microbe interactions that define the molecular pathogenesis of sepsis. Polyphosphates are linear polymers of
inorganic phosphate (Pi) residues that are present in all living organisms. The metabolism of bacteria
accumulates long-chains of polyphosphates (Pi: n≥1,000) in contrast to the short-chain polyphosphates (Pi:
n<100) typically found in mammalian cells. The biologic effects are dependent on chain length. Emerging data
suggest that short-chain polyphosphates modulate blood coagulation and inflammation, while the role of long-
chain, bacteria-derived, polyphosphates in sepsis is an understudied research field. Our preliminary work
suggests that neutralization of polyphosphates or bacterial polyphosphate deficiency improves survival of
peritoneal sepsis induced by cecum ligation and puncture (CLP) in mice. In sterile macrophage cultures, long-
chain polyphosphates modulate LPS/TLR4-induced macrophage polarization, iNOS expression and immuno-
metabolism. Here, we propose to test the central hypothesis that bacterial polyphosphates are lethal metabolites
in sepsis because of their detrimental interference with the innate host response to infection. To shed light into
the biological activities of polyphosphates, we propose to address 3 specific aims: (1) To study the effects of
polyphosphate neutralization, we will use a recombinant exopolyphosphatase (PPX) protein and characterize its
activities on the host response to polymicrobial CLP sepsis. A single-cell proteogenomics approach (CITE-Seq)
will aim to capture the heterogeneity/polarization of invading professional phagocytes as a function of
polyphosphates. The polyphosphates will be measured in sepsis samples of mice and humans. (2) To
characterize the direct interference of polyphosphates with the functions of cultured macrophages, we will
combine bacterial TLR agonists with synthetic polyphosphates of different chain length. It will be studied if
polyphosphates curb STAT/IRF signaling pathways for modulating iNOS, L-arginase, cytokines/chemokines,
and metabolic reprogramming (OXPHOS, glycolysis). In addition, affinity purification combined with label-free
proteomics will aim for the identification of novel polyphosphate targeted proteins in macrophages; to better
understand the mechanisms how polyphosphates interfere with phagocyte responses in sepsis. (3) In gnotobiotic
mice, monocolonized with a polyphosphate-deficient E. coli mutant (Δppk), we will investigate how bacteria-
derived polyphosphates shape innate immunity before and after monomicrobial CLP sepsis. Peritoneal and
intestinal mucosal macrophages will be characterized and compared for their functions, transcriptome plasticity
and immuno-metabolic phenotypes. This research project will provide novel insights into the unexplored activities
of bacterial polyphosphates within the networks of host-pathogen interactions of sepsis and may ultimately
advance strategies for therapeutic reversal of maladaptive inflammatory milieus.
项目摘要:脓毒症仍然是发病和死亡的主要原因,每年有近 5000 万例脓毒症
在全球范围内缺乏 FDA 批准的药物的情况下,迫切需要更好地了解宿主 -
定义败血症分子发病机制的微生物相互作用 聚磷酸盐是线性聚合物。
存在于所有生物体中的无机磷酸盐 (Pi) 残留物 细菌的新陈代谢。
与短链聚磷酸盐 (Pi: n≥1,000) 相比,积累长链聚磷酸盐 (Pi: n≥1,000)
n<100)通常存在于哺乳动物细胞中,其生物学效应取决于新出现的数据。
表明短链聚磷酸盐调节血液凝固和炎症,而长链聚磷酸盐的作用
脓毒症中的细菌源性多磷酸盐是我们的初步研究领域。
表明多磷酸盐的中和或细菌多磷酸盐缺乏可提高细菌的存活率
在无菌巨噬细胞培养物中,通过盲肠结扎和穿刺(CLP)诱导的腹膜败血症。
链多磷酸调节 LPS/TLR4 诱导的巨噬细胞极化、iNOS 表达和免疫
在这里,我们建议检验细菌多磷酸盐是致命代谢物的中心假设。
在败血症中,因为它们会干扰宿主对感染的先天反应。
为了研究多磷酸盐的生物活性,我们建议解决 3 个具体目标:(1)研究
多磷酸中和,我们将使用重组外多磷酸酶(PPX)蛋白并表征其
单细胞蛋白质组学方法(CITE-Seq)对宿主对多种微生物 CLP 脓毒症反应的影响。
将旨在捕获入侵专业吞噬细胞的异质性/极化作为函数
多磷酸盐将在小鼠和人类的败血症样本中进行测量 (2) To。
表征多磷酸盐对培养巨噬细胞功能的直接干扰,我们将
将细菌 TLR 激动剂与不同链长的合成聚磷酸盐结合起来将被研究。
多磷酸盐抑制 STAT/IRF 信号通路,调节 iNOS、L-精氨酸酶、细胞因子/趋化因子、
和代谢重编程(OXPHOS、糖酵解)此外,亲和纯化与无标记相结合。
蛋白质组学的目标是更好地鉴定巨噬细胞中的新型多磷酸靶向蛋白质;
(3) 在知生中
小鼠,单克隆有缺乏多磷酸盐的大肠杆菌突变体(Δppk),我们将研究细菌如何-
衍生的多磷酸盐在单微生物 CLP 脓毒症前后形成先天免疫。
将表征并比较肠粘膜巨噬细胞的功能、转录组可塑性
该研究项目将为未探索的活动提供新的见解。
脓毒症宿主-病原体相互作用网络中细菌多磷酸盐的变化,最终可能
逆转适应不良的炎症环境的治疗进展的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Bosmann其他文献
Markus Bosmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Bosmann', 18)}}的其他基金
Interleukin-27 in host response to Legionella infection
Interleukin-27 在宿主对军团菌感染的反应中
- 批准号:
10745091 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Role reversal of MAVS in bacterial sepsis
MAVS 在细菌性脓毒症中的作用逆转
- 批准号:
10439602 - 财政年份:2018
- 资助金额:
$ 53.71万 - 项目类别:
Role reversal of MAVS in bacterial sepsis
MAVS 在细菌性脓毒症中的作用逆转
- 批准号:
10191010 - 财政年份:2018
- 资助金额:
$ 53.71万 - 项目类别:
相似国自然基金
Mpro蛋白靶向亲和层析定向挖掘白及属中药抗新冠肺炎活性芪类成分
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
原子水平一体化构建腺相关病毒亲和层析介质及分子设计基础
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于凝集素芯片与凝集素亲和层析技术的参芪扶正注射液联合 IFN-α对肝癌切除术后复发转移干预机制的糖蛋白组学研究
- 批准号:81803954
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于生物质谱和亲和层析策略的大肠杆菌O157: H7特异性抗体的靶蛋白及多肽抗原表位的鉴定与研究
- 批准号:31701680
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
治疗SLE复方中的抗炎物质分离及对狼疮活动干预机制的研究
- 批准号:81673857
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Nanobody- and mini-G protein-enabled molecular pharmacology of HCAR1
HCAR1 的纳米抗体和迷你 G 蛋白分子药理学
- 批准号:
10666999 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
The regulation of renal tubular transport by cannabinoid receptor type 1 (CB1R) and its endogenous lipid ligands
1型大麻素受体(CB1R)及其内源性脂质配体对肾小管转运的调节
- 批准号:
10588113 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Age-dependent effects on microglia-mediated control of neuronal activity
小胶质细胞介导的神经元活动控制的年龄依赖性影响
- 批准号:
10532682 - 财政年份:2021
- 资助金额:
$ 53.71万 - 项目类别: