Personalizing immunotherapy in HER2+ breast cancer through quantitative imaging
通过定量成像对 HER2 乳腺癌进行个性化免疫治疗
基本信息
- 批准号:10570913
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:BiologicalBiological ModelsBlood VesselsBreastBreast Cancer PatientCalibrationCaringClinicalClinical TrialsCombined Modality TherapyCytotoxic ChemotherapyDataDiseaseDoseDrug Delivery SystemsDrug KineticsDrug SynergismERBB2 geneEpidermal Growth Factor ReceptorEquilibriumFlow CytometryGoalsHealthcareHistologyHumanHypoxiaImageImaging TechniquesImmune responseImmune systemImmunotherapyInfiltrationMagnetic Resonance ImagingMainstreamingMalignant NeoplasmsMammary NeoplasmsMapsMeasuresMedical ImagingMetastatic malignant neoplasm to brainMethodsModalityModelingMusMyelogenousMyeloid CellsNecrosisNeoplasm MetastasisPathway interactionsPatient CarePatient-Focused OutcomesPatientsPerfusionPositron-Emission TomographyPrediction of Response to TherapyRegimenResearchRiskRouteScheduleSolid NeoplasmSystemic TherapyT-LymphocyteTechniquesTestingTherapeuticTherapeutic EffectToxic effectTranslationsTrastuzumabTreatment EfficacyTreatment ProtocolsTumor BiologyTumor Cell InvasionValidationanti-PD-1anti-cancercancer carecancer therapycell killingchemotherapyclinically relevantcontrast enhancedcytotoxicexperiencehigh riskhuman modelimmunogenicimprovedin vivoindividual patientmalignant breast neoplasmmathematical modelmouse modelneoplastic cellneovascularizationoptimal control theoryoverexpressionpatient derived xenograft modelpersonalized approachpersonalized immunotherapypersonalized medicinequantitative imagingresponseserial imagingstandard of caresynergismsystemic toxicitytargeted treatmenttreatment optimizationtreatment responsetreatment strategytumortumor growthtumor microenvironment
项目摘要
PROJECT SUMMARY/ABSTRACT
The overall goal of this proposal is to integrate advanced imaging and mathematical modeling to
optimize combination treatments involving immunotherapy in human epidermal growth factor receptor
type 2 positive (HER2+) breast cancer. Current standard-of-care therapeutic regimens and even clinical trials
are limited because they are not personalized based on the tumor biology of the individual patient, potentially
diminishing the efficacy of the treatment. This proposed research will employ noninvasive, quantitative magnetic
resonance imaging (MRI) and positron emission tomography (PET) to inform mathematical models to direct
timing for multi-modal therapies in HER2+ breast cancer. Overexpression of HER2 is indicative of more
aggressive disease with five times higher risk of metastasis, with increased risk of breast-to-brain metastases,
compared to HER2- patients. We have extensive experience and expertise in using quantitative medical imaging
techniques to assess and predict treatment response to anti-cancer therapies. Additionally, we have shown that
trastuzumab dosing prior to cytotoxic treatment (instead of simultaneous dosing of combination therapies) has
potential to improve vascular delivery and oxygenation in HER2+ breast cancer tumors, which in turns sensitizes
the tumor for cytotoxic therapies, reduces metastatic potential, improves drug delivery and reduces systemic
toxicity. As immunotherapy becomes mainstream for many solid tumors, it is essential to develop techniques to
both personalize and optimize therapeutic efficacy and decrease systemic toxicity. Thus, our central hypothesis
is that quantitative imaging integrated with mathematical modeling can enhance personalization of treatment
strategies and increase efficacy (additive and synergistic) of combination therapies with immunotherapy in
HER2+ breast cancer. To achieve this goal, we have identified the following specific aims: 1) Quantify biological
changes to immuno- and targeted therapy in HER2+ breast cancer with quantitative imaging, 2) Build a
mathematical model of biological alterations to immunotherapy in HER2+ breast cancer, and 3) Employ model
forecasting and quantitative imaging to guide combination therapy. We will exploit the alterations in biological
changes, such as vascular delivery (evaluated with dynamic contrast enhanced (DCE)- MRI pharmacokinetic
parameter, Ktrans) and oxygenation (evaluated with fluoromisonidazole (FMISO)-PET imaging metric, SUV) to
inform a mathematical model in order to identify (and validate) optimal sequencing (order, timing, dose) to
combination therapy (targeted, immunotherapy) for enhanced synergistic effects. Completion of this project
provides a pathway to dramatically improve the efficacy of treatment strategies with immunotherapy for primary
HER2+ breast cancer. Importantly, the proposed techniques provide a straightforward route for patient
translation and potential to enhance care for HER2+ breast cancer patients.
项目概要/摘要
该提案的总体目标是将先进的成像和数学建模集成到
优化涉及人表皮生长因子受体免疫治疗的联合治疗
2 型阳性 (HER2+) 乳腺癌。当前的护理标准治疗方案甚至临床试验
是有限的,因为它们没有根据个体患者的肿瘤生物学进行个性化,可能
降低治疗效果。这项拟议的研究将采用非侵入性、定量磁力
磁共振成像 (MRI) 和正电子发射断层扫描 (PET) 为数学模型提供指导
HER2+ 乳腺癌多模式治疗的时机。 HER2 的过度表达表明更多
侵袭性疾病,转移风险高出五倍,乳腺至脑转移的风险增加,
与 HER2- 患者相比。我们在使用定量医学成像方面拥有丰富的经验和专业知识
评估和预测抗癌疗法的治疗反应的技术。此外,我们还证明了
在细胞毒性治疗之前给予曲妥珠单抗(而不是同时给予联合疗法)
具有改善 HER2+ 乳腺癌肿瘤血管输送和氧合的潜力,从而提高敏感性
用于细胞毒性疗法的肿瘤,降低转移潜力,改善药物输送并减少全身性
毒性。随着免疫疗法成为许多实体瘤的主流,开发技术以
既可以个性化并优化治疗效果,又可以降低全身毒性。因此,我们的中心假设
定量成像与数学建模相结合可以增强治疗的个性化
策略并提高联合疗法与免疫疗法的疗效(相加和协同)
HER2+ 乳腺癌。为了实现这一目标,我们确定了以下具体目标:1)量化生物
通过定量成像改变 HER2+ 乳腺癌的免疫和靶向治疗,2) 建立
HER2+ 乳腺癌免疫治疗生物学改变的数学模型,以及 3) Employ 模型
预测和定量成像来指导联合治疗。我们将利用生物的改变
变化,例如血管输送(通过动态对比增强 (DCE) 评估 - MRI 药代动力学
参数,Ktrans)和氧合(用氟米索硝唑 (FMISO)-PET 成像指标,SUV 评估)
告知数学模型,以便识别(并验证)最佳测序(顺序、时间、剂量)
联合治疗(靶向、免疫治疗)以增强协同效应。本项目完成情况
提供了一条显着提高原发性免疫疗法治疗策略疗效的途径
HER2+ 乳腺癌。重要的是,所提出的技术为患者提供了一条简单的途径
翻译和加强对 HER2+ 乳腺癌患者护理的潜力。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Author Correction: Positron emission tomography imaging with 89Zr-labeled anti-CD8 cys-diabody reveals CD8+ cell infiltration during oncolytic virus therapy in a glioma murine model.
作者更正:使用 89Zr 标记的抗 CD8 cys-双抗体的正电子发射断层扫描成像揭示了胶质瘤小鼠模型中溶瘤病毒治疗期间 CD8 细胞浸润。
- DOI:
- 发表时间:2021-10-08
- 期刊:
- 影响因子:4.6
- 作者:Kasten, Benjamin B;Houson, Hailey A;Coleman, Jennifer M;Leavenworth, Jianmei W;Markert, James M;Wu, Anna M;Salazar, Feli;Tavaré, Richard;Massicano, Adriana V F;Gillespie, G Yancey;Lapi, Suzanne E;Warram, Jason M;Sorace, Anna G
- 通讯作者:Sorace, Anna G
Optimizing combination therapy in a murine model of HER2+ breast cancer.
优化 HER2 乳腺癌小鼠模型的联合治疗。
- DOI:
- 发表时间:2022-12-01
- 期刊:
- 影响因子:7.2
- 作者:Lima, Ernesto A B F;Wyde, Reid A F;Sorace, Anna G;Yankeelov, Thomas E
- 通讯作者:Yankeelov, Thomas E
CD4 T-cell immune stimulation of HER2 + breast cancer cells alters response to trastuzumab in vitro.
HER2→乳腺癌细胞的 CD4 T 细胞免疫刺激改变了体外对曲妥珠单抗的反应。
- DOI:
- 发表时间:2020-11-10
- 期刊:
- 影响因子:5.8
- 作者:Song, Patrick N;Mansur, Ameer;Dugger, Kari J;Davis, Tessa R;Howard, Grant;Yankeelov, Thomas E;Sorace, Anna G
- 通讯作者:Sorace, Anna G
Predicting response to combination evofosfamide and immunotherapy under hypoxic conditions in murine models of colon cancer.
预测结肠癌小鼠模型缺氧条件下对依磷酰胺和免疫疗法联合治疗的反应。
- DOI:
- 发表时间:2023-09-15
- 期刊:
- 影响因子:0
- 作者:Lima, Ernesto A B F;Song, Patrick N;Reeves, Kirsten;Larimer, Benjamin;Sorace, Anna G;Yankeelov, Thomas E
- 通讯作者:Yankeelov, Thomas E
[89Zr]-Pertuzumab PET Imaging Reveals Paclitaxel Treatment Efficacy Is Positively Correlated with HER2 Expression in Human Breast Cancer Xenograft Mouse Models.
[89Zr]-帕妥珠单抗 PET 成像显示紫杉醇治疗效果与人乳腺癌异种移植小鼠模型中的 HER2 表达呈正相关。
- DOI:
- 发表时间:2021-03-12
- 期刊:
- 影响因子:0
- 作者:Lu, Yun;Li, Meng;Massicano, Adriana V F;Song, Patrick N;Mansur, Ameer;Heinzman, Katherine A;Larimer, Benjamin M;Lapi, Suzanne E;Sorace, Anna G
- 通讯作者:Sorace, Anna G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna C. Sorace其他文献
Anna C. Sorace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna C. Sorace', 18)}}的其他基金
Mathematical modeling and molecular imaging to maximize response while minimizing toxicities from systemic therapies in preclinical models of breast cancer
数学建模和分子成像可最大限度地提高乳腺癌临床前模型中全身治疗的反应,同时最大限度地降低毒性
- 批准号:
10564905 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Personalizing immunotherapy in HER2+ breast cancer through quantitative imaging
通过定量成像对 HER2 乳腺癌进行个性化免疫治疗
- 批准号:
10338122 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
相似国自然基金
基于生物打印技术仿生构建血管化骨组织模型及其骨再生应用研究
- 批准号:32371420
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向血管化肝组织模型的多材料多细胞悬浮生物3D打印技术研究
- 批准号:52275294
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
新型蛋清液体基传感器实时监测显微吻合术后血管灌注生物信号的数学模型建立及机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于线型光响应液晶高分子的动态体外血管模型构筑及应用
- 批准号:51903054
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于斑马鱼模型的深远海真菌中促血管生成活性成分的研究
- 批准号:81602982
- 批准年份:2016
- 资助金额:17.3 万元
- 项目类别:青年科学基金项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Endothelial Metabolic Reprogramming by Interferon-gamma in Coronary Artery Disease
干扰素γ在冠状动脉疾病中的内皮代谢重编程
- 批准号:
10662850 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
- 批准号:
10760187 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别: