Structure, Mechanism and Interactions of Type IA Topoisomerases
IA型拓扑异构酶的结构、机制和相互作用
基本信息
- 批准号:10569676
- 负责人:
- 金额:$ 34.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAddressAffectAntibiotic ResistanceAntibioticsBacterial DNA Topoisomerase IBiochemicalBiological AssayCell physiologyComplementary DNAComplexDNADNA-Directed RNA PolymeraseDrug resistanceEnzymesFaceFutureGenetic RecombinationGenetic TranscriptionGenomeGenome StabilityGenus MycobacteriumGoalsHuman ActivitiesIn VitroInfectionInvestigationKnowledgeLifeLigandsLigationMeasuresModelingMolecularMolecular ConformationMovementMutationPlayRNARegulationRelaxationReplication-Associated ProcessResearchResearch ActivityRoleSeminalSingle-Stranded DNAStructureSuperhelical DNATOP1 geneTopoisomeraseTopoisomerase IIIToxinX-Ray Crystallographyglobal healthin vivoinsightmolecular dynamicsmutantneurodevelopmentnew therapeutic targetpathogenic bacteriapreventrepairedsingle moleculesmall moleculetargeted treatmenttool
项目摘要
Project Summary/Abstract
Type IA topoisomerases are ubiquitous in the three kingdoms of life, and play critically important roles in
maintaining proper DNA topology during the vital cellular processes of replication, transcription, recombination,
and repair. The PI’s research activities have provided seminal biochemical and structural findings for this class
of essential genome regulator, and continue to address key questions on the catalytic mechanism of type IA
topoisomerases and provide new insights into their functional and regulatory interactions. This information is
needed to utilize type IA topoisomerases present in every bacterial pathogen as a novel therapeutic target for
finding new antibiotics to help face our serious global health challenge of antibiotic resistance. Type IA
topoisomerases catalyze the relaxation of negatively supercoiled DNA by cleaving a single DNA strand in the
underwound duplex DNA and passing the complementary DNA single strand through the break before
religation of the cleaved strand to change the DNA topology. The molecular mechanism of the large enzyme
conformational changes that are required for the coordinated movement of the passing DNA in and out of the
DNA gate is the critical barrier for elucidating how bacterial TOP1 can relax negatively supercoiled DNA with
high efficiency to prevent hypernegative DNA supercoiling and R-loop stabilization that can arise during
transcription. This important function of bacterial TOP1 is facilitated by the direct TOP1 interaction with RNA
polymerase that we have characterized and found to be targeted by endogenous toxin in mycobacteria. For
future studies, we will create new TOP1 mutants perturbed in interdomain interactions at a distance from the
active site and investigate the effect on the in vivo relaxation activity and in vitro interactions with DNA
substrate. Mutants with reduced catalytic efficiency will be further studied to determine if the mutations affected
the gate opening-closing dynamics and DNA strand passage. We will capture new structural conformations of
the TOP1-DNA complex that may represent different stages of the catalytic cycle with X-ray crystallography
and measure the gate opening-closing dynamics with single molecule assays. Structural studies will also
incorporate other ligands including RNA. Type IA topoisomerases have evolved to include TOP1 and TOP3
enzymes in all three kingdoms of life that possess dual activities on both DNA and RNA substrates. The RNA
topoisomerase activity of human TOP3B has been shown to be required for neurodevelopment and the
enzyme is also involved in R-loop suppression and genome stability. We are modeling the RNA interaction of
type IA topoisomerases with molecular dynamics simulations to determine how the DNA and RNA substrate
may be accommodated differentially by change in enzyme conformation and interacting residues. We have
initiated studies to identify a separation of function mutation or small molecule probe that can be used to
distinguish between the DNA and RNA topoisomerase activity in vivo. Such research tools for study of cellular
RNA topoisomerase activity and regulation will have an important and lasting impact on the field.
项目概要/摘要
IA 型拓扑异构酶在生命的三个王国中普遍存在,并在
在复制、转录、重组等重要细胞过程中保持正确的 DNA 拓扑结构,
PI 的研究活动为此类提供了开创性的生化和结构发现。
重要的基因组调控因子,并继续解决IA型催化机制的关键问题
拓扑异构酶并提供对其功能和调控相互作用的新见解。
需要利用存在于每种细菌病原体中的 IA 型拓扑异构酶作为新的治疗靶点
寻找新的抗生素来帮助应对 IA 型抗生素耐药性带来的严峻的全球健康挑战。
拓扑异构酶通过切割DNA中的单链来催化负超螺旋DNA的松弛。
缠绕下的双链 DNA 并将互补 DNA 单链穿过之前的断裂处
断裂链的关系改变DNA拓扑结构的大酶的分子机制。
DNA进出DNA协调运动所需的构象变化
DNA 门是阐明细菌 TOP1 如何松弛负超螺旋 DNA 的关键屏障
高效率地防止超负 DNA 超螺旋和 R 环稳定化过程中可能出现的情况
细菌 TOP1 的这一重要功能是通过 TOP1 与 RNA 的直接相互作用来促进的。
我们已对聚合酶进行了表征并发现它是分枝杆菌中内源毒素的目标。
在未来的研究中,我们将创建新的 TOP1 突变体,在距
活性位点并研究其对体内松弛活性和体外与 DNA 相互作用的影响
将进一步研究催化效率降低的突变体,以确定突变是否受到影响。
我们将捕获门的打开-关闭动力学和 DNA 链通道。
TOP1-DNA 复合物可能代表 X 射线晶体学催化循环的不同阶段
并通过单分子分析测量门的打开-关闭动力学。
结合其他配体,包括 RNA,IA 型拓扑异构酶已进化为包括 TOP1 和 TOP3。
生命三个王国中的酶,对 DNA 和 RNA 底物具有双重活性。
人类 TOP3B 的拓扑异构酶活性已被证明是神经发育和神经发育所必需的
酶还参与 R 环抑制和基因组稳定性。我们正在模拟 R 环的 RNA 相互作用。
IA 型拓扑异构酶通过分子动力学模拟确定 DNA 和 RNA 底物如何
可以通过酶构象和残基的变化来进行差异调节。
发起了研究来鉴定可用于分离功能突变或小分子探针
区分体内 DNA 和 RNA 拓扑异构酶活性的研究工具。
RNA拓扑异构酶活性和调控将对该领域产生重要而持久的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuk-Ching Tse-Dinh其他文献
Yuk-Ching Tse-Dinh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuk-Ching Tse-Dinh', 18)}}的其他基金
Structure, Mechanism and Interactions of Type IA Topoisomerases
IA型拓扑异构酶的结构、机制和相互作用
- 批准号:
10389425 - 财政年份:2021
- 资助金额:
$ 34.15万 - 项目类别:
Structure, Mechanism and Interactions of Type IA Topoisomerases
IA型拓扑异构酶的结构、机制和相互作用
- 批准号:
10093404 - 财政年份:2021
- 资助金额:
$ 34.15万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
8070106 - 财政年份:2010
- 资助金额:
$ 34.15万 - 项目类别:
HTS assay development targeting Yersinia pestis topoisomerase I
针对鼠疫耶尔森菌拓扑异构酶 I 的 HTS 检测开发
- 批准号:
7991064 - 财政年份:2010
- 资助金额:
$ 34.15万 - 项目类别:
HTS assay development targeting Yersinia pestis topoisomerase I
针对鼠疫耶尔森菌拓扑异构酶 I 的 HTS 检测开发
- 批准号:
8234706 - 财政年份:2010
- 资助金额:
$ 34.15万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
7333269 - 财政年份:2006
- 资助金额:
$ 34.15万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
8324194 - 财政年份:2006
- 资助金额:
$ 34.15万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
7541787 - 财政年份:2006
- 资助金额:
$ 34.15万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
8186092 - 财政年份:2006
- 资助金额:
$ 34.15万 - 项目类别:
Bacterial cell killing by topoisomerase I mediated DNA lesion
拓扑异构酶 I 介导的 DNA 损伤杀死细菌细胞
- 批准号:
8522124 - 财政年份:2006
- 资助金额:
$ 34.15万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Selective CYP26 inhibitors for the oral treatment of recalcitrant nodular acne.
用于口服治疗顽固性结节性痤疮的选择性 CYP26 抑制剂。
- 批准号:
10822482 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Novel Therapeutics for Heart Failure: Modified, Water-Soluble Caveolin-1 Scaffolding Domain Peptides with Improved Characteristics for Drug Development
心力衰竭的新型疗法:修饰的水溶性 Caveolin-1 支架结构域肽,具有改进的药物开发特性
- 批准号:
10599654 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Chemical proteomic investigation of lipid kinase specificity and druggability
脂质激酶特异性和成药性的化学蛋白质组学研究
- 批准号:
10660099 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别: