Neuronal Circuit Controlling Sleep-Promoting Ventrolateral Preoptic Neurons
控制促进睡眠的腹外侧视前神经元的神经元回路
基本信息
- 批准号:10570184
- 负责人:
- 金额:$ 37.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAfferent PathwaysAgingAnatomyArousalBehaviorBehavioralBehavioral ModelBrainBrain StemCellsDataDevelopmentDiseaseDisinhibitionEnterobacteria phage P1 Cre recombinaseExhibitsFLP recombinaseFiberGalaninHypersomniasHypothalamic structureIn VitroInfluentialsInterneuronsInterventionKnowledgeLateralLesionMapsMediatingMethodologyModelingNeuronsOpticsPathway interactionsPatientsPhotometryPopulationProcessProsencephalonPublishingRegulationResearchRoleSignal TransductionSleepSleep DisordersSleep disturbancesSleeplessnessSliceSourceSpecificitySynapsesSynaptic PotentialsTestingTimeWakefulnessWorkbasebrain circuitrycholinergiccholinergic neuroncombinatorialdrug developmentin vivoinsightmonoaminenervous system disorderneurochemistryneuronal circuitrynovelnovel therapeuticsoptogeneticspostsynaptic neuronspreoptic nucleuspresynapticresponsesleep regulationtransmission process
项目摘要
Project Summary/Abstract
Sleep is an active process requiring the participation of delimited nodes of sleep-promoting cell populations.
Work over the last twenty years has demonstrated that galanin expressing neurons in the ventrolateral preoptic
(VLPOGal) neurons are necessary for normal sleep and cortical slow wave activity. There remain however
several fundamental gaps in our understanding of the cellular and synaptic basis by which VLPOGal neurons
are regulated. One highly influential circuit model for behavioral sleep-wake control is the `flip-flop' model of
sleep-state switching, which proposes that sleep-wake transitions are regulated by a reciprocal inhibition
between sleep-promoting VLPOGal neurons and monoaminergic and cholinergic wake-promoting nodes of the
forebrain and brainstem. The findings that reciprocal anatomical connections exist between the VLPO and
monoamine and cholinergic neurons and that these cell groups exhibit, respectively, sleep- and wake-active
firing profiles have provided general support for the model. However, the VLPO receives afferent inputs from
many other sources including non-cholinergic and non-monoaminergic neurons directly involved in sleep and
wake regulation. We have recently found that activation of GABAergic neurons of the lateral hypothalamus
potently promotes arousal by directly inhibiting VLPOGal neurons. Here we seek to extend this finding by
identifying other potential synaptic drives that control arousal levels, including both long-range and local
synaptic drives. To this end, while it has been appreciated for some time that VLPOGal neurons are under local
synaptic control, the details of this intra-VLPO circuit remains largely uncharacterized. We have found that
VLPOGal neurons are directly inhibited by a group of local GABAergic neurons. We propose that this local
GABAergic circuit serves as common entry node through which afferent wake- and sleep-promoting pathways
control VLPOGal neurons, with the specific hypotheses that this occurs by 1) direct and feedforward inhibition to
produce arousal and 2) disinhibition of VLPOGal neurons to produce sleep. The current proposal thus seeks to
identify, first in vitro and then in vivo, the long-range afferent inputs that directly or indirectly regulate VLPOGal
neurons to drive behavioral and cortical arousal via the local GABAergic network. To do so, we will first
employ in Specific Aims 1 in vitro circuit mapping and focal deletion of GABAergic transmission in VLPO
neurons to determine the necessity of the local GABAergic circuit for the control of VLPOGal neurons. In
Specific Aim 2 we will identify with in vitro recordings the postsynaptic neurons in VLPO that are targeted by
wake- and sleep-promoting inputs. Finally, in Specific Aim 3 we will use in vivo optogenetics to test whether the
afferent inputs to the VLPO first identified in vitro slices are necessary to produce sleep and wake behavioral
changes and fiber photometry to examine the state-dependent activity of these afferents to VLPO. Given the
large knowledge gap this proposal seeks to fill, we expect results from this collaborative work to provide
important and novel insights into the brain circuitry supporting sleep and wake regulation.
项目概要/摘要
睡眠是一个活跃的过程,需要促进睡眠的细胞群的有限节点的参与。
过去二十年的工作表明,腹外侧视前区表达甘丙肽的神经元
(VLPOGal) 神经元对于正常睡眠和皮质慢波活动是必需的。然而仍然存在
我们对 VLPOGal 神经元的细胞和突触基础的理解存在几个基本差距
受到监管。行为睡眠-觉醒控制的一种极具影响力的电路模型是“触发器”模型
睡眠状态切换,提出睡眠-觉醒转换是通过相互抑制来调节的
促进睡眠的 VLPOGal 神经元与单胺能和胆碱能促进唤醒的节点之间
前脑和脑干。研究结果表明 VLPO 和 VLPO 之间存在相互的解剖学联系
单胺和胆碱能神经元,并且这些细胞群分别表现出睡眠活跃和觉醒活跃
射击曲线为该模型提供了总体支持。然而,VLPO 接收来自
许多其他来源,包括直接参与睡眠的非胆碱能和非单胺能神经元
唤醒调节。我们最近发现下丘脑外侧 GABA 能神经元的激活
通过直接抑制 VLPOGal 神经元有效促进觉醒。在这里,我们试图通过以下方式扩展这一发现
识别控制唤醒水平的其他潜在突触驱动,包括远程和局部
突触驱动。为此,虽然人们已经认识到 VLPOGal 神经元在局部
突触控制,该 VLPO 内电路的细节在很大程度上仍然未知。我们发现
VLPOGal 神经元直接受到一组局部 GABA 能神经元的抑制。我们建议这个地方
GABAergic 电路作为公共入口节点,传入唤醒和睡眠促进途径通过该节点
控制 VLPOGal 神经元,具体假设是通过 1)直接和前馈抑制来发生
产生唤醒和 2) 解除 VLPOGal 神经元的抑制以产生睡眠。因此,当前的提案旨在
首先在体外,然后在体内,识别直接或间接调节 VLPOGal 的远程传入输入
神经元通过局部 GABA 网络驱动行为和皮质唤醒。为此,我们首先要
用于特定目标 1 VLPO 中 GABA 能传输的体外电路图绘制和局部删除
神经元来确定局部 GABA 能电路控制 VLPOGal 神经元的必要性。在
具体目标 2 我们将通过体外记录来识别 VLPO 中的突触后神经元,这些神经元是
促进唤醒和睡眠的输入。最后,在特定目标 3 中,我们将使用体内光遗传学来测试是否
首先在体外切片中识别出的 VLPO 的传入输入对于产生睡眠和唤醒行为是必要的
变化和纤维光度测定来检查这些传入 VLPO 的状态依赖性活动。鉴于
该提案旨在填补巨大的知识空白,我们期望这项协作工作的结果能够提供
对支持睡眠和觉醒调节的大脑回路的重要而新颖的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elda Arrigoni其他文献
Elda Arrigoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elda Arrigoni', 18)}}的其他基金
Neuronal circuit controlling sleep-promoting ventrolateral preoptic neurons
控制促进睡眠的腹外侧视前神经元的神经元回路
- 批准号:
10450341 - 财政年份:2022
- 资助金额:
$ 37.43万 - 项目类别:
Basal forebrain hypothalamic networks supporting wakefulness
支持清醒的基底前脑下丘脑网络
- 批准号:
8999030 - 财政年份:2015
- 资助金额:
$ 37.43万 - 项目类别:
Basal Forebrain Corticopetal GABAergic Neurons and Cortical Arousal
基底前脑皮质 GABA 能神经元和皮质唤醒
- 批准号:
8730247 - 财政年份:2013
- 资助金额:
$ 37.43万 - 项目类别:
Basal Forebrain Corticopetal GABAergic Neurons and Cortical Arousal
基底前脑皮质 GABA 能神经元和皮质唤醒
- 批准号:
8635522 - 财政年份:2013
- 资助金额:
$ 37.43万 - 项目类别:
相似国自然基金
谷氨酸及其受体经压力反射传入通路参与血压与心脏疼痛感受的性别差异研究
- 批准号:81903599
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
脑肠轴迷走传入通路调控海马小胶质细胞表型转化及黄连解毒汤干预研究
- 批准号:81573635
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
迷走传入神经TRPA1与TRPM8信号通路介导肠粘膜慢性炎症状态下冷刺激引发内脏高敏感的机制研究
- 批准号:81470812
- 批准年份:2014
- 资助金额:67.0 万元
- 项目类别:面上项目
CXCL12-CXCR4信号通路在新生鼠耳蜗听觉传入回路发育中的作用机制研究
- 批准号:81371099
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
Ach和CGRP在前庭核传入、传出神经元直接投射通路中的调节作用
- 批准号:81200739
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of E-Cadherin Down-Regulation in Prostatic Inflammation and Lower Urinary Tract Dysfunction
E-钙粘蛋白下调在前列腺炎症和下尿路功能障碍中的作用
- 批准号:
10564514 - 财政年份:2023
- 资助金额:
$ 37.43万 - 项目类别:
Regulation of Ductular Reaction by Substance P during Alcohol-induced Liver Injury
P物质对酒精性肝损伤过程中小管反应的调节
- 批准号:
10592570 - 财政年份:2023
- 资助金额:
$ 37.43万 - 项目类别:
Neuronal circuit controlling sleep-promoting ventrolateral preoptic neurons
控制促进睡眠的腹外侧视前神经元的神经元回路
- 批准号:
10450341 - 财政年份:2022
- 资助金额:
$ 37.43万 - 项目类别:
Developing a microphysiological system of a humanized Gut-Brain-Axis for age-associated transmissible neuropathologies
开发人性化肠脑轴的微生理系统,用于与年龄相关的传染性神经病理学
- 批准号:
10450941 - 财政年份:2022
- 资助金额:
$ 37.43万 - 项目类别:
Developing a Microphysiological System of a Humanized Gut-Brain-Axis for Ageassociated Transmissible Neuropathologies
开发用于与年龄相关的传染性神经病理学的人性化肠脑轴的微生理系统
- 批准号:
10764159 - 财政年份:2022
- 资助金额:
$ 37.43万 - 项目类别: