Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
基本信息
- 批准号:10559559
- 负责人:
- 金额:$ 29.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-10 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAmino AcidsArabidopsisBindingBiological AssayBiosensorCell NucleusCell ProliferationCell modelCellsCircadian DysregulationCircadian RhythmsDarknessDataDiseaseEnvironmentEnzymesEukaryotaFeedbackFosteringFunctional disorderFutureGene ExpressionGenesGenetic TranscriptionGlycerolipid Metabolism PathwayGoalsHealthHomeostasisHumanHypocotylKnowledgeLeadLightLinkLipid BindingLipidsLiposomesLocationMass Spectrum AnalysisMediatingMetabolicMetabolic DiseasesMetabolic PathwayMetabolic dysfunctionMetabolismMissionModelingMolecularMonitorMouse-ear CressMutagenesisMutationOutcomeOutputPathologic ProcessesPathway interactionsPhosphatidic AcidPhysiologicalPhysiologyPlantsProcessProductionRegulationRegulator GenesResearchRoleSignal TransductionSpecificitySurface Plasmon ResonanceTestingUnited States National Institutes of HealthWorkbiological adaptation to stresschromatin immunoprecipitationcircadiancircadian pacemakercircadian regulationdata miningday lengthexperimental studygenome editingimprovedin vivoinnovationinsightlipid mediatorlipid metabolismlipidomicsmodel organismmutantnovelresponsescreeningtranscription factor
项目摘要
PROJECT SUMMARY
Misalignments and disruption of the circadian clock lead to metabolic and physiological dysfunctions. The clock regulates
metabolism whereas metabolic activities feedback to influence circadian rhythms, and this interplay between the clock
and metabolism coordinates physiology. However, one major knowledge gap is the limited understanding of the
mechanism by which metabolism affects clock function. The goal of the proposed research is to elucidate the molecular
mechanism by which the circadian clock and lipid metabolism are interconnected through the interaction and reciprocal
regulation between lipid mediators and major clock regulators using the model organism Arabidopsis thaliana. The
feasibility of the proposed research is supported by recent findings that the central glycerolipid metabolic intermediate,
phosphatidic acid (PA), directly binds to the clock transcription factor LHY (LATE ELONGATED HYPOCOTYL),
manipulations of PA-metabolizing activities alter clock outputs, and disruptions of the clock perturb lipid accumulation in
Arabidopsis. The hypothesis is that the PA-LHY interaction functions as a cellular conduit to integrate the circadian clock
with lipid metabolism and mediate lipid production and organismal responses to changing environments. To test the
hypothesis, Aim 1 will characterize PA interaction with the clock regulators by determining the lipid binding specificity
to LHY, the amino acid residues involved in PA binding, and the intracellular location of the PA-LHY interaction using
subcellular-specific PA biosensors and mass spectrometry. Aim 2 will address how altered PA metabolism entrains the
circadian clock and mediates stress responses by identifying genes/enzymes responsible for producing PA species that
alter clock function. Through quantifying the effect of cellular PA changes on the expression of genes involved in clock
regulation, these data will be used to model how cellular PA changes lead to alterations in circadian rhythms and clock
outputs. Aim 3 will determine how the circadian clock affects lipid metabolism by using clock mutants to assess how
misalignments between internal circadian rhythms and the external environment affect lipid metabolism and
accumulation. In addition, clock-targeted genes in lipid metabolism will be identified and tested for roles in the circadian
regulation of lipid accumulation. The proposed studies will reveal new regulatory mechanisms for both the circadian clock
and lipid metabolism and will advance the current understanding of the interplay between these two pathways. The results
are relevant to human health because PA is a lipid mediator involved in mammalian clock regulation and various
pathological processes, and the basic molecular mechanism of the clock is conserved between plants and humans.
Therefore, the impact of the proposed work is to advance foundational knowledge for the molecular interconnection
between lipid metabolism and the clock in eukaryotes, and the information has the potential for future strategies for
understanding and mitigating metabolic and physiological dysfunctions associated with clock disruptions.
项目概要
生物钟的失调和破坏会导致代谢和生理功能障碍。时钟调节
新陈代谢,而代谢活动反馈影响昼夜节律,以及时钟之间的相互作用
新陈代谢协调生理学。然而,一个主要的知识差距是对
新陈代谢影响时钟功能的机制。拟议研究的目标是阐明分子
生物钟和脂质代谢通过相互作用和倒数相互关联的机制
使用模式生物拟南芥进行脂质介质和主要时钟调节器之间的调节。这
最近的发现支持了拟议研究的可行性,即中央甘油脂代谢中间体,
磷脂酸(PA),直接与时钟转录因子LHY(LATE ELONGATED HYPOCOTYL)结合,
PA 代谢活动的操纵会改变时钟输出,而时钟的破坏会扰乱体内的脂质积累
拟南芥。假设 PA-LHY 相互作用充当整合生物钟的细胞管道
与脂质代谢相关,并介导脂质产生和机体对不断变化的环境的反应。测试
假设,目标 1 将通过确定脂质结合特异性来表征 PA 与时钟调节器的相互作用
使用 LHY、参与 PA 结合的氨基酸残基以及 PA-LHY 相互作用的细胞内位置
亚细胞特异性 PA 生物传感器和质谱分析。目标 2 将解决改变 PA 代谢如何影响
生物钟并通过识别负责产生 PA 物种的基因/酶来介导应激反应
改变时钟功能。通过量化细胞 PA 变化对时钟相关基因表达的影响
调节,这些数据将用于模拟细胞 PA 变化如何导致昼夜节律和时钟的改变
输出。目标 3 将通过使用时钟突变体来评估生物钟如何影响脂质代谢
内部昼夜节律与外部环境之间的失调会影响脂质代谢和
积累。此外,将鉴定并测试脂质代谢中的时钟靶向基因在昼夜节律中的作用
调节脂质积累。拟议的研究将揭示生物钟的新调节机制
和脂质代谢,并将促进目前对这两种途径之间相互作用的理解。结果
与人类健康相关,因为 PA 是一种脂质介质,参与哺乳动物的时钟调节和各种
病理过程,时钟的基本分子机制在植物和人类之间是保守的。
因此,拟议工作的影响是推进分子互连的基础知识
脂质代谢和真核生物时钟之间的关系,这些信息有可能成为未来的策略
了解和减轻与时钟中断相关的代谢和生理功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUEMIN WANG其他文献
XUEMIN WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUEMIN WANG', 18)}}的其他基金
Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
- 批准号:
10806342 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
- 批准号:
10797879 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
- 批准号:
10185527 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
- 批准号:
10369696 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
- 批准号:
10387020 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MiCMV NIa-Pro 111位氨基酸对致病性的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Structural and chemical changes between empty and full AAV capsids
空 AAV 衣壳和完整 AAV 衣壳之间的结构和化学变化
- 批准号:
10646613 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Structure and Function of Direct Delivery Peptides
直接递送肽的结构和功能
- 批准号:
10717736 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
The role of beta-cell crinophagy in generating diabetogenic neoepitopes
β细胞吞噬在产生糖尿病新表位中的作用
- 批准号:
10733153 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别: