SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
基本信息
- 批准号:10559690
- 负责人:
- 金额:$ 29.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcute Respiratory Distress SyndromeAcute respiratory failureAddressAdmission activityAdvanced DevelopmentAffectAlgorithmsAmericanArchitectureAreaArtificial IntelligenceBenchmarkingCaringCessation of lifeClinicalCritical CareCritical IllnessDataData ProtectionData SetDetectionDevelopmentDiagnosisDiscriminationEffectivenessElectronic Health RecordEnsureEvaluationEvolutionFailureFunctional disorderGenerationsGoalsHealthHealthcareHospitalsHousingImageInstructionInterdisciplinary StudyIntubationLaboratoriesLawsLungMachine LearningManualsMathematicsMechanical ventilationMedicineMethodologyMethodsModalityModelingMorbidity - disease rateOperating RoomsPatientsPerceptionPlayPrivacyPropertyResearchRespiratory FailureRiskSocietiesStatistical MethodsSyndromeTechniquesTestingTimeTransportationTreatment outcomeValidationalgorithm developmentcare costsclinical applicationclinical decision supportclinical developmentclinical practiceclinically relevantcohortcomplex datacostcost efficientdata frameworkdata privacydata qualityexperiencehealth datahigh riskimprovedinnovationmortalitymultimodal datamultimodalitynovelprivacy preservationpsychologicrespiratorytheoriestool
项目摘要
Gaining access to health data is the major barrier in developing and validating new AI methods for clinical
applications, since health data are protected by strict privacy laws. A significant obstacle in current data
provisioning is that existing methods to access and deidentifying health data are increasingly being
challenged for their effectiveness, with a common perception that it is generally impossible to fully
deidentify any health data set and still retain utility for research purposes.
Synthetic data is a promising concept for solving this conundrum, by reconciling data innovation with
data privacy. The goal of synthetic data is to create an as-realistic-as-possible dataset generated from
existing data - one that maintains the statistical properties of the original dataset, but does so without risk
of exposing sensitive information. While synthetic data is not new in health care, so far it was limited to
simple, single-modality, static datasets, which severely affected its impact.
The aim of this interdisciplinary research effort is the development of an algorithmic framework for the
faithful and privacy-preserving generation of heterogeneous, dynamic synthetic datasets to boost the
development of clinical decision support applications.
In the US, critical illness effects a significant number of Americans per year with an estimated 4 million
admission and 500,000 deaths per year. A sizable proportion of the patients suffer respiratory failure
requiring intubation. To increase the utility of algorithms in clinical applications, like in the ICU, strategies
are needed to address barriers to use of complex data. Thus, the ICU is a prototypical setting where
high-quality synthetic data would be tremendously helpful to break through this data bottleneck, while
respecting health data privacy laws. However, ascertaining data to test and validate the algorithms is
difficult to obtain. As such, this project proposes to use a type of severe respiratory (lung) failure, acute
respiratory distress syndrome (ARDS) to study the use of synthetic data for the development of artificial
intelligence-based algorithms. Patients with ARDS experience substantial morbidity and mortality,
prolonged mechanical ventilation high hospital-associated costs, and long-term physical and psychological
dysfunction. Using ARDS as an archetypical model to guide this research effort will a ensure successful
transition from theory to clinical practice.
RELEVANCE (See instructions):
The results of this project will play a key role in advancing AI research in health, especially in areas of
high-risk, high-cost care such as the emergency department, operating room, and ICU. On a specific level,
the project will improve detection and treatment of the acute respiratory distress syndrome. On a broader
level, this effort will contribute to more cost-efficient health care while enabling improved patient treatment
outcomes.
获取健康数据是开发和验证新的临床人工智能方法的主要障碍
应用程序,因为健康数据受到严格的隐私法保护。当前数据的一个重大障碍
现有的访问和去识别化健康数据的方法越来越多地被采用
其有效性受到质疑,普遍认为一般不可能完全
去识别任何健康数据集并仍然保留用于研究目的的实用性。
合成数据是解决这一难题的一个有前景的概念,它可以将数据创新与
数据隐私。合成数据的目标是创建一个尽可能真实的数据集
现有数据 - 保持原始数据集统计属性的数据,但这样做没有风险
暴露敏感信息。虽然合成数据在医疗保健领域并不新鲜,但到目前为止仅限于
简单、单模态、静态数据集,严重影响了其影响。
这项跨学科研究工作的目的是开发一个算法框架
忠实且保护隐私地生成异构动态合成数据集,以提高
开发临床决策支持应用程序。
在美国,每年有大量美国人受到严重疾病的影响,估计有 400 万人
每年有 50 万人入院和死亡。相当一部分患者出现呼吸衰竭
需要插管。为了提高算法在临床应用(例如 ICU)中的实用性,策略
需要解决使用复杂数据的障碍。因此,ICU 是一个典型的环境,其中
高质量的合成数据对于突破这一数据瓶颈将有极大的帮助,同时
尊重健康数据隐私法。然而,确定数据来测试和验证算法是
很难获得。因此,该项目建议使用一种严重呼吸(肺)衰竭,急性
呼吸窘迫综合征(ARDS)研究使用合成数据开发人工呼吸系统
基于智能的算法。 ARDS 患者的发病率和死亡率很高,
长时间的机械通气 高昂的医院相关费用以及长期的身体和心理
功能障碍。使用 ARDS 作为典型模型来指导这项研究工作将确保成功
从理论到临床实践的转变。
相关性(参见说明):
该项目的成果将在推进健康领域的人工智能研究方面发挥关键作用,特别是在以下领域:
急诊科、手术室、ICU等高风险、高费用的护理。在具体层面上,
该项目将改善急性呼吸窘迫综合征的检测和治疗。在更广泛的
水平上,这一努力将有助于提高医疗保健成本效益,同时改善患者治疗
结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Yeates Adams其他文献
Jason Yeates Adams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Yeates Adams', 18)}}的其他基金
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 29.86万 - 项目类别:
相似国自然基金
锌离子转运蛋白SLC39A1在急性呼吸窘迫综合征中的作用和机制
- 批准号:32371177
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
β-catenin诱导调节性T细胞代谢重编程及亚型转化在急性呼吸窘迫综合征的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
特络细胞源性外泌体经JAK/STAT-miRNA-E2F轴修复肺血管改善急性呼吸窘迫综合征的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Point-of-care system to assess the risk of trauma-induced acute respiratory distress syndrome
用于评估创伤引起的急性呼吸窘迫综合征风险的护理点系统
- 批准号:
10594793 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
Physiologic Predictors of Respiratory Failure in Patients Presenting with Dyspnea
呼吸困难患者呼吸衰竭的生理预测因素
- 批准号:
10606999 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
Aerosol Ventilation for Rapid Cooling of Transplant Donor Lungs
用于快速冷却移植供体肺的气雾通气
- 批准号:
10481907 - 财政年份:2022
- 资助金额:
$ 29.86万 - 项目类别: