Predictor Profiles of Opioid Use Disorders and Overdose Among Post-9/11 Veterans
9/11 事件后退伍军人中阿片类药物使用障碍和过量的预测因素
基本信息
- 批准号:10559588
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adverse eventAfghanistanAmalgamAnxietyArea Under CurveBehavioralBiologicalCOVID-19 pandemicCOVID-19 pandemic effectsCaringComplexComputerized Medical RecordDataData ScienceDatabasesDevelopmentDiseaseDistalDomestic ViolenceEarly InterventionEpidemiologyEthnic OriginEventFundingGenderGeneral PopulationGenerationsGoalsHealth Services AccessibilityHigh PrevalenceIndividualInterventionIraqLeadMachine LearningMeasuresMediatingMental DepressionMental HealthMental disordersModelingOpioidOutcomeOverdosePerformancePopulationPost-Traumatic Stress DisordersPredispositionPublic HealthRaceRecording of previous eventsRecurrenceResearchResearch DesignResearch MethodologyResearch PersonnelRiskRisk AssessmentRisk FactorsSamplingSensitivity and SpecificitySocial DistanceSubgroupSubstance Use DisorderSymptomsTechniquesTestingTrainingTraumaTraumatic Brain InjuryUnited StatesUnited States Department of Veterans AffairsVeteransVeterans Health AdministrationWorkaddictionadvanced analyticsagedblast exposurecareerchronic painclassification algorithmclassification treescohortdisorder riskepidemiology studygradient boostinghealth datahigh riskhigh risk populationimprovedlong term consequences of COVID-19machine learning algorithmmachine learning classificationmachine learning methodmachine learning predictionmilitary veterannovelopioid epidemicopioid misuseopioid use disorderoverdose riskpandemic diseasepost 9/11precision medicinepredictive modelingprogramspsychiatric comorbiditypsychologicrandom forestregression treessociodemographicsstudy populationsuicidal behaviortargeted treatmenttrauma exposure
项目摘要
The overall aim of this proposed study is to use machine learning prediction models to evaluate the
multifaceted, additive and multiplicative interactions of known and novel risk factors for opioid use disorder
(OUD) and overdose in Post-9/11 Veterans. The proposed study will also investigate the short- and long-term
impact of the coronavirus disease 2019 (COVID-19) pandemic on the risk of OUD and overdose.
TRAINING PLAN: The CDA-2 training plan will facilitate the applicant’s primary career goal of becoming a
fully funded, independent epidemiologic researcher at the Department of Veterans Affairs (VA), with a focus on
addiction and suicidal behavior. The CDA-2 will provide additional training necessary to lead an independent
program of research investigating the multifaceted sociodemographic, physical, psychological, and behavioral
factors mediating and moderating the risk of addiction and suicidal behavior. The first step of achieving this
goal is to complete the following training aims: 1) gaining expertise in the biological and behavioral basis of
addiction; 2) gaining expertise in the assessment of the problems of TBI and blast exposure, psychiatric
disorders, and suicidal behavior, which is pervasive in this generation of Veterans; 3) gaining expertise in
advanced analytic techniques employed in health data science, including machine learning algorithms; and 4)
professional development to achieve career independence as a VA funded epidemiologic researcher.
RESEARCH DESIGN & METHODS: The proposed study will use Veterans Health Administration (VHA)
electronic medical records to develop models predicting OUD and overdose risk. The sample will include Post-
9/11 Veterans who are aged 18-65, receive care in the VHA, and will have completed the VA primary TBI
screen between October 2007 and February 2020 (n~1,267,000). We will assess the risk of incident and
recurrent OUD and overdose events, as separate outcomes, using machine learning algorithmic models. We
will examine whether overdose was 1) fatal and non-fatal and 2) intentional and unintentional. For Aims 1 and
2, we will examine the risk of OUD and overdose events between October 1, 2007 and February 29, 2020. For
Exploratory Aim 3, we will examine the risk of OUD and overdose events between March 1, 2020 and
September 30, 2025. We will use several machine learning classification-tree modeling approaches, including
classification and regression trees, random forest, and gradient boosting, to develop predictor profiles of OUD
and overdose incorporating important risk factors and interactions. The validity (sensitivity and specificity) and
prediction accuracy (area under the curve) will be assessed for all prediction profile models. OBJECTIVES:
Aim 1: Develop and evaluate the performance of predictor profiles incorporating known and novel risk factors
and interactions for OUD and overdose over proximal (30, 60, and 90 days) and distal (180, 365, 730, 1095
and >1460 days) prediction intervals using machine learning classification algorithms. Hypothesis 1a: The
machine learning algorithms will have high validity and prediction accuracy (e.g., sensitivity and specificity and
area under the curve) >0.8. Hypothesis 1b: Accuracy and predictive ability will be higher in the proximal vs.
distal prediction intervals. Aim 2: Examine gender, race/ethnicity, deployment-related trauma (e.g., TBI and
prevalent psychiatric and substance disorders), and close-blast exposure as moderators of the risk of OUD
and overdose. Hypothesis 2: There will be novel risk factors and differential variable importance impacting the
risk of OUD and overdose within the subgroup-specific predictor profiles. Exploratory Aim 3: Investigate the
short- and long-term impact of the COVID-19 pandemic on the risk of OUD and overdose using machine
learning classification algorithms to develop predictor profiles of known and novel risk factors and interactions.
Hypothesis 3: The COVID-19 pandemic will have both a direct effect on the risk for OUD and overdose and an
indirect effect through the onset or exacerbation of mental health symptoms and psychiatric conditions.
这项研究的总体目标是使用机器学习预测模型来评估
阿片类药物使用障碍的已知和新风险因素的多方面、加法和乘法相互作用
(OUD) 和 9/11 后退伍军人的药物过量。拟议的研究还将调查短期和长期的影响。
2019 年冠状病毒病 (COVID-19) 大流行对 OUD 和用药过量风险的影响。
培训计划:CDA-2 培训计划将促进申请人成为一名
退伍军人事务部 (VA) 全额资助的独立流行病学研究员,重点关注
CDA-2 将提供领导独立所需的额外培训。
调查多方面的社会人口、身体、心理和行为的研究计划
调节和减轻成瘾和自杀行为风险的因素是实现这一目标的第一步。
目标是完成以下培训目标:1)获得生物学和行为基础方面的专业知识
2) 获得评估 TBI 和爆炸暴露、精神科问题的专业知识
疾病和自杀行为,这在这一代退伍军人中普遍存在;3)获得以下方面的专业知识;
健康数据科学中采用的先进分析技术,包括机器学习算法;4)
专业发展,以实现作为 VA 资助的流行病学研究员的职业独立。
研究设计和方法:拟议的研究将使用退伍军人健康管理局 (VHA)
电子病历用于开发预测 OUD 和用药过量风险的模型。
18-65 岁的 9/11 退伍军人在 VHA 接受护理,并将完成 VA 初级 TBI
我们将评估 2007 年 10 月至 2020 年 2 月期间的筛查(n~1,267,000)。
我们使用机器学习算法模型将复发性 OUD 和过量事件作为单独的结果。
将检查过量服用是否是 1) 致命和非致命以及 2) 有意和无意的。
2、我们将检查2007年10月1日至2020年2月29日期间发生OUD和过量事件的风险。
探索性目标 3,我们将检查 2020 年 3 月 1 日至
2025 年 9 月 30 日。我们将使用多种机器学习分类树建模方法,包括
分类和回归树、随机森林和梯度提升,以开发 OUD 的预测器配置文件
以及过量服用,包括重要的风险因素和相互作用。
将评估所有预测剖面模型的预测准确性(曲线下面积):
目标 1:开发并评估包含已知和新风险因素的预测因子概况的性能
OUD 与过量近端(30、60 和 90 天)和远端(180、365、730、1095
和 >1460 天)使用机器学习分类算法的预测间隔。
机器学习算法将具有较高的有效性和预测准确性(例如,敏感性和特异性以及
曲线下面积)>0.8。假设 1b:近端与非端的准确性和预测能力会更高。
目标 2:检查性别、种族/民族、部署相关创伤(例如 TBI 和
流行的精神疾病和物质障碍),以及近距离爆炸暴露作为 OUD 风险的调节因素
假设 2:将会有新的风险因素和不同的变量重要性影响。
探索性目标 3:调查亚组特定预测因子中 OUD 和过量用药的风险。
COVID-19 大流行对 OUD 和使用机器过量的风险的短期和长期影响
学习分类算法来开发已知和新颖的风险因素和相互作用的预测器概况。
假设 3:COVID-19 大流行将对 OUD 和用药过量的风险产生直接影响,并且对 OUD 和用药过量风险产生直接影响。
通过心理健康症状和精神疾病的发作或恶化产生间接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer R Fonda其他文献
Jennifer R Fonda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer R Fonda', 18)}}的其他基金
Predictor Profiles of Opioid Use Disorders and Overdose Among Post-9/11 Veterans
9/11 事件后退伍军人中阿片类药物使用障碍和过量的预测因素
- 批准号:
10363000 - 财政年份:2022
- 资助金额:
-- - 项目类别:
相似国自然基金
公众参与视角下中国对脆弱国家开展新型援助的效果评估 ——以阿富汗微观调研数据为例
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
相似海外基金
Amnion cell secretome mediated therapy for traumatic brain injury
羊膜细胞分泌组介导的创伤性脑损伤治疗
- 批准号:
10746655 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Non-Inferiority Trial of Trauma Informed Guilt Reduction Therapy (TrIGR) for PTSD
创伤知情内疚减轻疗法 (TrIGR) 治疗 PTSD 的非劣效性试验
- 批准号:
10584430 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Molecular and neural mechanisms associated with injury and recovery from traumatic brain injury
与创伤性脑损伤的损伤和恢复相关的分子和神经机制
- 批准号:
10693653 - 财政年份:2023
- 资助金额:
-- - 项目类别:
'Diaspora States' in Somalia and Afghanistan: New Perspectives on Post-War Politics, Dual Citizenship and International Statebuilding
索马里和阿富汗的“侨民国家”:战后政治、双重国籍和国际国家建设的新视角
- 批准号:
EP/X022048/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship