Structural Dynamics of Cardiac Myosin-Binding Protein C Regulation
心肌肌球蛋白结合蛋白 C 调节的结构动力学
基本信息
- 批准号:10090620
- 负责人:
- 金额:$ 38.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingActinsAddressAffectArtificial skinBindingBiological AssayCardiacCardiac Muscle ContractionCardiac MyosinsCardiomyopathiesComputer SimulationDataDevelopmentDiseaseEquilibriumEvaluationFDA approvedFiberFilamentFluorescenceFluorescence Resonance Energy TransferFluorescence SpectroscopyFrequenciesGenesHealthHeartHeart DiseasesHumanHypertrophic CardiomyopathyIn SituIn VitroIndividualInheritedKineticsKnowledgeLabelLeadMeasurementMeasuresMechanicsMedicalMicrofilamentsMolecularMolecular ConformationMonitorMuscleMuscle functionMutationMyocardialMyocardiumMyosin ATPaseN-terminalPathogenesisPathogenicityPathologicPerformancePhenotypePhosphorylationPhysiologicalPositioning AttributePropertyProteinsPublishingRecombinantsRegulationReporterReportingResearchResolutionRoleSarcomeresSiteSkinStressStructureSudden DeathTechnologyTestingTherapeuticThick FilamentThin FilamentThinnessTimeWorkbasebiophysical toolscardiac muscle diseasedata exchangedesigneffective therapyheart cellimprovedin silicoin vivoinnovationmolecular dynamicsmutantmyosin-binding protein Cnovelprotein functionprotein structuresimulationtool
项目摘要
PROJECT SUMMARY
Hypertrophic cardiomyopathy (HCM) is a relatively common disease affecting more than 1 in 500 individuals
and the leading cause of sudden death in young individuals and athletes. HCM is an unmet medical need with
no FDA-approved treatments. ~40% of all HCM cases are associated with mutations in the gene encoding
cardiac myosin-binding protein C (MyBP-C). MyBP-C is a thick filament-associated protein that is critical for
normal myocardial performance; it is centrally positioned in the sarcomere to regulate interactions between
myosin cross-bridges and actin thin filaments that are responsible for force development. We have previously
demonstrated that increased phosphorylation of MyBP-C enhances actin-myosin interactions leading to
accelerated contraction kinetics in myocardium, whereas reduced phosphorylation led to reduced actin-myosin
proximity and decelerated contraction. However, it is not understood how MyBP-C phosphorylation alters the
structural dynamics of its interactions with actin and/or myosin to modulate force development in normal
myocardium or how mutations alter functions that ultimately contribute to HCM pathogenesis. We have
developed innovative biophysical tools that, for the first time, enable evaluation of: (1) the structural dynamics of
MyBP-C, (2) how it interacts with actin and/or myosin in muscle, and (3) how these interactions are affected by
phosphorylation and known pathologic mutations. We will test the central hypothesis that phosphorylation and
HCM mutations of N-terminal MyBP-C alter functionally significant structural properties of MyBP-C and
interactions with actin and myosin. Aim 1 will evaluate the effects of phosphorylation, HCM mutations, and
binding to actin or myosin on MyBP-C structural dynamics. Spectroscopic approaches will be employed to detect
conformational changes (structure) within MyBP-C due to phosphorylation, HCM mutation, and actin/myosin
binding (function). Molecular dynamics (MD) simulations will be applied as a complementary approach. Aim 2
will determine how MyBP-C phosphorylation and HCM mutants affect proximities and dynamics of key
myocardial proteins. We will utilize site-directed probe technologies in skinned (demembranated) cardiac fibers
to determine how phosphorylation/mutants affect protein structure/interactions in situ to regulate contractility.
The proposed studies capture structural dynamics in real time and resolve interactions in real myocardial space
using novel high-resolution approaches. These aims are a stepwise progression developing a new paradigm for
studying normal and mutant MyBP-C during the contractile cycle. This paradigm involves monitoring distances
between points on proteins and the order (or disorder) of those distances under physiological conditions, in
interacting proteins and functioning myocardium. Not all HCM mutants impact the same functions of MyBP-C.
Time-resolved fluorescence data components, thin/thick filament dynamics, mechanics, and simulations will be
used to separate mutants into identifiable bins, setting the stage for identifying mechanistic-based therapies to
specifically treat different classes of mutations.
项目概要
肥厚性心肌病 (HCM) 是一种相对常见的疾病,影响超过五百分之一的人
也是年轻人和运动员猝死的主要原因。 HCM 是一项未得到满足的医疗需求
没有 FDA 批准的治疗方法。约 40% 的 HCM 病例与编码基因突变有关
心肌肌球蛋白结合蛋白 C (MyBP-C)。 MyBP-C 是一种粗丝相关蛋白,对于
心肌功能正常;它位于肌节的中央,调节之间的相互作用
肌球蛋白跨桥和肌动蛋白细丝负责力量的发展。我们之前有过
证明 MyBP-C 磷酸化的增加增强了肌动蛋白-肌球蛋白的相互作用,从而导致
心肌收缩动力学加速,而磷酸化减少导致肌动蛋白肌球蛋白减少
接近和减速收缩。然而,尚不清楚 MyBP-C 磷酸化如何改变
其与肌动蛋白和/或肌球蛋白相互作用的结构动力学,以调节正常情况下的力量发展
心肌或突变如何改变最终导致 HCM 发病机制的功能。我们有
开发了创新的生物物理工具,首次能够评估:(1)
MyBP-C,(2) 它如何与肌肉中的肌动蛋白和/或肌球蛋白相互作用,以及 (3) 这些相互作用如何受到
磷酸化和已知的病理突变。我们将检验磷酸化和
N 端 MyBP-C 的 HCM 突变改变了 MyBP-C 的功能上重要的结构特性,
与肌动蛋白和肌球蛋白的相互作用。目标 1 将评估磷酸化、HCM 突变和
在 MyBP-C 结构动力学上与肌动蛋白或肌球蛋白结合。将采用光谱方法来检测
由于磷酸化、HCM 突变和肌动蛋白/肌球蛋白,MyBP-C 内的构象变化(结构)
绑定(功能)。分子动力学(MD)模拟将作为补充方法应用。目标2
将确定 MyBP-C 磷酸化和 HCM 突变体如何影响关键的邻近性和动态
心肌蛋白。我们将在带皮(去膜)心脏纤维中利用定点探针技术
确定磷酸化/突变体如何影响原位蛋白质结构/相互作用以调节收缩性。
拟议的研究实时捕获结构动力学并解决真实心肌空间中的相互作用
使用新颖的高分辨率方法。这些目标是逐步发展的,为
研究收缩周期中正常和突变的 MyBP-C。该范例涉及监控距离
蛋白质上的点之间以及生理条件下这些距离的顺序(或无序),
相互作用的蛋白质和功能性心肌。并非所有 HCM 突变体都会影响 MyBP-C 的相同功能。
时间分辨荧光数据组件、细/粗丝动力学、力学和模拟将
用于将突变体分离到可识别的箱中,为识别基于机械的疗法奠定了基础
专门治疗不同类别的突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brett A Colson其他文献
Brett A Colson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brett A Colson', 18)}}的其他基金
Skeletal Myosin-Binding Protein C Regulation and Structural Dynamics
骨骼肌球蛋白结合蛋白 C 调节和结构动力学
- 批准号:
10442876 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
Skeletal Myosin-Binding Protein C Regulation and Structural Dynamics
骨骼肌球蛋白结合蛋白 C 调节和结构动力学
- 批准号:
10666442 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
High-throughput discovery platform for modulators of cardiac muscle proteins to treat heart failure
用于治疗心力衰竭的心肌蛋白调节剂的高通量发现平台
- 批准号:
10483462 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
Diversity Supplement to Skeletal Myosin-Binding Protein C Regulation and Structural Dynamics
骨骼肌球蛋白结合蛋白 C 调节和结构动力学的多样性补充
- 批准号:
10824055 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
Diversity Supplement to Structural Dynamics of Cardiac Myosin-Binding Protein C Regulation
心肌肌球蛋白结合蛋白 C 调节结构动力学的多样性补充
- 批准号:
10412720 - 财政年份:2021
- 资助金额:
$ 38.38万 - 项目类别:
Structural Dynamics of Cardiac Myosin-Binding Protein C Regulation
心肌肌球蛋白结合蛋白 C 调节的结构动力学
- 批准号:
10545008 - 财政年份:2019
- 资助金额:
$ 38.38万 - 项目类别:
Structural Dynamics of Cardiac Myosin-Binding Protein C Regulation
心肌肌球蛋白结合蛋白 C 调节的结构动力学
- 批准号:
10320335 - 财政年份:2019
- 资助金额:
$ 38.38万 - 项目类别:
Structural Dynamics of Cardiac Myosin Binding Protein-C
心肌肌球蛋白结合蛋白-C 的结构动力学
- 批准号:
9129782 - 财政年份:2014
- 资助金额:
$ 38.38万 - 项目类别:
Structural Dynamics of Cardiac Myosin Binding Protein-C
心肌肌球蛋白结合蛋白-C 的结构动力学
- 批准号:
8791218 - 财政年份:2014
- 资助金额:
$ 38.38万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Structural basis of the super-relaxed state in human cardiac muscle
人体心肌超松弛状态的结构基础
- 批准号:
10634701 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
Structural basis of the super-relaxed state in human cardiac muscle
人体心肌超松弛状态的结构基础
- 批准号:
10502114 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
Diversity Supplement to Structural Dynamics of Cardiac Myosin-Binding Protein C Regulation
心肌肌球蛋白结合蛋白 C 调节结构动力学的多样性补充
- 批准号:
10412720 - 财政年份:2021
- 资助金额:
$ 38.38万 - 项目类别:
Hyaluronan as a mediator of intrauterine growth restriction-induced islet dysfunction in type 2 diabetes
透明质酸作为 2 型糖尿病宫内生长受限诱导的胰岛功能障碍的介质
- 批准号:
10630158 - 财政年份:2021
- 资助金额:
$ 38.38万 - 项目类别: