Microelectrode Array Insertion System using Ultrasonic Vibration to Improve Insertion Mechanics, Reduce Tissue Dimpling and Trauma, and Improve Placement Precision in the Neocortex
使用超声波振动的微电极阵列插入系统改善插入力学,减少组织凹陷和创伤,并提高新皮质的放置精度
基本信息
- 批准号:10268984
- 负责人:
- 金额:$ 142.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AmputeesAnimal ModelBRAIN initiativeBrainCaliberCell DeathChronicCicatrixClinicalCollaborationsCommunicationCommunitiesComplexCouplingDataDevelopmentDevicesDura MaterElectrodesEngineeringEquipment MalfunctionExhibitsFeedbackForeign BodiesFrequenciesGoalsHemorrhageHumanImageImplantImplantation procedureImplanted ElectrodesIncidenceIndividualInflammationLocationMagnetic Resonance ImagingManualsMarketingMechanicsMedicalMedical ResearchMethodsMicroelectrodesMotionNeocortexNeurologicNeuronsNeurosciences ResearchOperative Surgical ProceduresOutcomeParaplegiaPatient CarePenetrationPeripheral Nervous SystemPhasePolymersPropertyProprioceptionProsthesisRattusResolutionRiskSalesSensoryShapesSiliconSiteSmall Business Innovation Research GrantSpeedStructureSurfaceSystemTechnologyTestingTissuesTraumaTungstenUltrafineUltrasonicsValidationWorkbasebrain machine interfacecarbon fibercommercializationcraniumdensitydesignextracellularflexibilitygraspimplantationimprovedimproved outcomein vivoinnovationmillimeterminimally invasivemotor controlneural implantneurotransmissionnonhuman primatenovelpre-clinicalpreservationprosthesis controlrelating to nervous systemresponsesuccesstissue traumatooltwo-photonverification and validationvibration
项目摘要
This Phase II SBIR further develops and tests a system that employs ultrasonic vibration to improve the
insertion mechanics for multichannel penetrating electrode arrays. This proposal is in response to PA-18-871
BRAIN Initiative: Development, Optimization, and Validation of Novel Tools and Technologies for
Neuroscience Research – including ‘Iterative refinement of such tools and technologies with the end-user
community’. The long-term goal of Actuated Medical, Inc. is to develop technology enabling accurate
placement of penetrating neural electrode arrays at target locations with minimal tissue trauma and
displacement, ultimately paving the way for clinical use of neural implants.
Penetrating neural implants provide direct access to extracellular neural signals across the central and
peripheral nervous systems with both high temporal and spatial resolution. Unfortunately, the implantation of
neural electrode arrays, commonly comprised of numerous closely spaced shanks, applies forces to neural
tissue resulting in significant compression (dimpling), prohibiting uniform shank insertion, and increasing the
risk of trauma, bleeding and inflammation at the implant site. These issues can increase the chronic foreign
body response (FBR) leading to neural cell death, glial scaring, and device failure. Phase I demonstrated the
ability to releasably grip and deliver ultrasonic vibration to a range of commercially available implant types,
including floating-style arrays, resulting in reductions of insertion force and surface dimpling in bench studies of
up to 80-90% for most implants tested. In vivo, ultrasonic vibration significantly reduced brain surface dimpling
(~50%, p<0.01) and exhibited evidence of reduced bleeding, while preserving device function as evidenced by
post implant neural recordings. Furthermore, preliminary work suggests significant potential for the ultrasonic
vibration to improve insertion of ultrafine (8-15 µm) microwire arrays, as well as NeuroNexus’ Matrix platform
arrays, one of the most delicate and complicated commercially-available implants. This Phase II SBIR expands
use of the NeuralGlider inserter for inserting complex, fragile, and flexible penetrating neural electrode arrays
using ultrasonic vibration to reduce insertion force, brain surface dimpling, tissue damage, and bleeding. The
project uses a unique multi-institutional collaboration to obtain scientific data, supporting the benefits of the
NeuralGlider insertion technology. Phase II hypothesis: Ultrasonic micro-vibration improves insertion accuracy
and success, reduces insertion trauma, and improves recording outcomes for penetrating neural electrode
arrays. Specific Aims: Aim 1 - Evaluate implantation trauma and inflammation response through 2-photon
imaging and magnetic resonance imaging. Aim 2 - Demonstrate efficacy of NeuralGlider insertion approach
for ultra-fine, ultra-high-density electrode array designs. Aim 3 - Integrate end user feedback, design upgrades
for coupling options, and conduct Verification and Validation. Aim 4 - Demonstrate improved outcomes with
micro-vibrated insertion.
第二阶段 SBIR 进一步开发并测试了一种采用超声波振动来改善
多通道穿透电极阵列的插入机制 该提案是为了响应 PA-18-871。
BRAIN Initiative:新工具和技术的开发、优化和验证
神经科学研究——包括“与最终用户一起迭代完善此类工具和技术”
Actuated Medical, Inc. 的长期目标是开发能够实现准确的技术。
将穿透性神经电极阵列放置在目标位置,且组织创伤最小
位移,最终为神经植入物的临床应用铺平道路。
穿透性神经植入物可直接访问中枢和神经细胞外的神经信号
不幸的是,具有高时间和空间分辨率的周围神经系统的植入。
神经电极阵列通常由许多紧密间隔的柄组成,向神经施加力
组织导致显着压缩(凹陷),阻止均匀的柄插入,并增加
这些问题会增加植入部位的外伤、出血和炎症风险。
身体反应(FBR)导致神经细胞死亡、神经胶质损伤和设备故障,第一阶段证明了这一点。
能够以可释放的方式夹紧并向一系列市售植入物类型传递超声波振动,
包括浮动式阵列,从而减少了基准研究中的插入力和表面凹痕
对于大多数测试的植入物来说,超声波振动显着减少了 80-90% 的大脑表面凹陷。
(~50%,p<0.01)并表现出减少出血的证据,同时保留了装置功能,如
此外,初步工作表明超声波具有巨大的潜力。
振动以改善超细(8-15 µm)微线阵列的插入,以及 NeuroNexus 的 Matrix 平台
阵列,是最精致、最复杂的商用植入物之一,二期 SBIR 得到了扩展。
使用 NeuralGlider 插入器插入复杂、脆弱且灵活的穿透神经电极阵列
使用超声波振动来减少插入力、脑表面凹陷、组织损伤和出血。
该项目利用独特的多机构合作来获取科学数据,支持
NeuralGlider 插入技术第二阶段假设:超声波微振动提高插入精度
和成功,减少插入创伤,并改善穿透神经电极的记录结果
具体目标:目标 1 - 通过 2 光子评估植入创伤和炎症反应。
目标 2 - 展示 NeuralGlider 插入方法的功效。
用于超精细、超高密度电极阵列设计 目标 3 - 整合最终用户反馈、设计升级。
的耦合选项,并进行验证和确认 目标 4 - 展示改进的结果。
微振动插入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maureen L. Mulvihill其他文献
Maureen L. Mulvihill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maureen L. Mulvihill', 18)}}的其他基金
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10552838 - 财政年份:2022
- 资助金额:
$ 142.35万 - 项目类别:
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10763996 - 财政年份:2022
- 资助金额:
$ 142.35万 - 项目类别:
ICORPs Support for Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
ICORP 支持声学植入保护系统的开发,以提高神经接口的性能和寿命
- 批准号:
10739498 - 财政年份:2022
- 资助金额:
$ 142.35万 - 项目类别:
Expansion of Engineering and Testing for 'Locally Targeted Acoustic Neuropathy Medication Delivery System for Pain Relief without Large Systemic Doses and Side Effects'
扩大“用于缓解疼痛且无大全身剂量和副作用的局部靶向听神经病药物输送系统”的工程和测试
- 批准号:
9933278 - 财政年份:2019
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10708957 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10438928 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10611153 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
9925224 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Microelectrode Array Insertion System using Ultrasonic Vibration to Improve Insertion Mechanics, Reduce Tissue Dimpling and Trauma, and Improve Placement Precision in the Neocortex
使用超声波振动的微电极阵列插入系统改善插入力学,减少组织凹陷和创伤,并提高新皮质的放置精度
- 批准号:
10021212 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10324810 - 财政年份:2018
- 资助金额:
$ 142.35万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
脆性X综合征动物模型中异常视觉信息处理和视觉注意力的神经环路机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Dissemination of the Human Neocortical Neurosolver (HNN) software for circuit level interpretation of human MEG/EEG
传播用于人类 MEG/EEG 电路级解释的人类新皮质神经解算器 (HNN) 软件
- 批准号:
10726032 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Contextual modulation of visual decision-making across the visual hierarchy
跨视觉层次结构的视觉决策的上下文调制
- 批准号:
10658176 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别:
Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
- 批准号:
10657971 - 财政年份:2023
- 资助金额:
$ 142.35万 - 项目类别: