Columbia GENIE (GENomic Integration with Ehr)
Columbia GENIE(基因组与 Ehr 集成)
基本信息
- 批准号:8968053
- 负责人:
- 金额:$ 85.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBasic ScienceClinicalClinical DataClinical InformaticsClinical ResearchCollaborationsCommunitiesComplementConsentCountryDataData QualityDiagnosisDisciplineDiseaseElectronic Health RecordEthicsFundingGeneticGenetic RiskGenomicsGoalsHealthHealth PersonnelHealth StatusHeightHereditary DiseaseHospitalsIncidental FindingsIndividualInformaticsInstitutesInterventionKnowledgeLearningLinkLiteratureMedical GeneticsMedical centerMedicineMethodsModelingNew York CityParticipantPatient CarePatient PreferencesPatient Self-ReportPatientsPharmacologyPhenotypePrecision Medicine InitiativeProviderResearchResearch InfrastructureSamplingScienceSolutionsStratificationSystems BiologyTechnologyUniversitiesWashingtonWorkbasebiobankbiomedical informaticsclinical data warehouseclinical phenotypecohortdata sharingdesigndisorder preventiondisorder riskexome sequencinggenetic associationhealth recordimprovedlegal implicationmedically underservednext generationnovelpatient populationpoint of careprecision medicinepublic health ethicspublic health relevancerare variantshared decision makingsocial implicationsocioeconomics
项目摘要
DESCRIPTION (provided by applicant): A current participant in the eMERGE-II consortium, Columbia serves a racially and ethnically diverse patient population in New York City, and has a strong tradition of community engagement. We have made significant contributions to the goals of eMERGE-II, including developing and evaluating electronic health records-based phenotyping algorithms; understanding data biases, data missingness, and other data quality issues in EHR data and their impact on phenotyping; defining a research agenda for next-generation EHR phenotyping; exploring the use of patient self-reported health status data to complement EHR data for phenotyping; developing novel methods for hereditability estimation; designing informatics interventions to integrate patient care and clinical research workflows and to link EHR and sequence data with genomic knowledge for decision support; communicating genetic risk to patients; addressing patients' preferences for returning incidental findings; and investigating the impact of returning results on patients and clinicians27-32. Columbia has also established Precision Medicine as a major university-wide initiative. To date, our biobank has accumulated a multiethnic cohort of 26,310 individuals with their samples linked to our EHR data, among which we currently have exome sequence data on 3,059 patients and consent for broad genetic discoveries and wide data sharing without re-consent from 7,648 patients. This includes nearly 4,000 patients with rich self- reported health status information, who are representative of the Northern Manhattan community, and were not pre-selected based on any specific disease or diagnosis. Our proposal for eMERGE-III builds on our prior work and expertise in genomic medicine. Our four specific aims will be accomplished by wide dissemination of data and phenotyping algorithms, close collaboration with eMERGE and other research consortia (e.g., CSER, LEGACY, DHEAMS, OHDSI, CTSA, PCORI, and so on), and by using standards-based formal methods. Aim 1: Advance next-generation phenotyping by designing, validating, and sharing high-throughput, data quality-aware, standards-based phenotyping methods. Aim 2: Perform genetic association studies of rare variants with diverse clinical phenotypes through broad collaboration with the eMERGE network and other phenotyping research communities. Aim 3: Develop practical, scalable learning mechanisms for returning results by leveraging a genomic patient portal and genetic providers to dynamically elicit and incorporate patient preferences for return of genomic results, returning results, and studying patient understanding of returned results. Aim 4: Provide genomic decision support by enhancing and validating our clinical and informatics infrastructure for genomic decision support with learning mechanisms for tailored shared decision-making.
描述(由适用提供):哥伦比亚当前参加了现成的II联盟,在纽约市为大致和种族多样化的患者人群提供服务,并具有牢固的社区参与传统。我们为出现的II目标做出了重大贡献,包括开发和评估基于电子健康记录的表型算法;了解EHR数据中的数据偏见,数据丢失和其他数据质量问题及其对表型的影响;定义下一代EHR表型的研究议程;探索使用患者自我报告的健康状况数据以补充EHR数据进行表型的使用;开发用于遗传性估计的新方法;设计信息的干预措施,以整合患者护理和临床研究工作流程,并将EHR和序列数据与基因组知识联系起来以进行决策支持;向患者传达遗传风险;解决患者对返回偶然发现的偏好;并研究返回结果对患者和临床医生的影响27-32。哥伦比亚还建立了精密医学作为一项主要的大学范围倡议。迄今为止,我们的生物库积累了与我们的EHR数据相关的26,310名个人组成的多民族队列,其中我们目前拥有3,059名患者的外显子序列数据,并同意广泛的遗传发现和广泛的数据共享,而无需重新介绍7,648例患者。这包括近4,000名自我报告的健康状况信息的患者,这些患者代表曼哈顿北部社区,并且不是根据任何特定疾病或诊断预先选择的。我们对III的提议建立在我们先前的工作和基因组医学专业知识的基础上。我们的四个具体目标将通过广泛传播数据和表型算法,与Emerge和其他研究概念(例如CSER,Legacy,Dheams,ohdsi,ohdsi,ohdsi,ctsa,pcori等)进行密切合作来实现。目标1:通过设计,验证和共享高通量,数据质量意识,基于标准的表型方法来提高下一代表型。 AIM 2:通过与Emerge Network和其他表型研究社区进行广泛的合作,对具有不同临床表型的稀有变体进行遗传关联研究。 AIM 3:通过利用基因组患者门户和遗传提供商动态引起的实用,可扩展的学习机制来返回结果,并纳入患者的偏好,以返回基因组结果,返回结果以及研究患者对返回结果的理解。 AIM 4:通过增强和验证我们的临床和信息基础设施来提供基因组决策支持,以通过学习机制来量身定制决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI G GHARAVI其他文献
ALI G GHARAVI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI G GHARAVI', 18)}}的其他基金
Columbia/Cornell/Harlem Hospital Precision Medicine Initiative HPO
哥伦比亚/康奈尔/哈莱姆医院精准医学计划 HPO
- 批准号:
9525197 - 财政年份:2016
- 资助金额:
$ 85.95万 - 项目类别:
Columbia/Cornell/Harlem Hospital Precision Medicine Initiative HPO
哥伦比亚/康奈尔/哈莱姆医院精准医学计划 HPO
- 批准号:
9228787 - 财政年份:2016
- 资助金额:
$ 85.95万 - 项目类别:
Columbia GENIE (GENomic Integration with Ehr)
Columbia GENIE(基因组与 Ehr 集成)
- 批准号:
9134799 - 财政年份:2015
- 资助金额:
$ 85.95万 - 项目类别:
Columbia GENIE (GENomic Integration with Ehr)
Columbia GENIE(基因组与 Ehr 集成)
- 批准号:
9896294 - 财政年份:2015
- 资助金额:
$ 85.95万 - 项目类别:
The Host Genome and the Urinary Microbiome in UTI and GU Structural Defects
UTI 和 GU 结构缺陷中的宿主基因组和泌尿微生物组
- 批准号:
10022308 - 财政年份:2014
- 资助金额:
$ 85.95万 - 项目类别:
Human genetic approaches to lower urinary tract phenotypes
降低尿路表型的人类遗传学方法
- 批准号:
10700954 - 财政年份:2014
- 资助金额:
$ 85.95万 - 项目类别:
Human genetic approaches to lower urinary tract phenotypes
降低尿路表型的人类遗传学方法
- 批准号:
10297545 - 财政年份:2014
- 资助金额:
$ 85.95万 - 项目类别:
Human genetic approaches to lower urinary tract phenotypes
降低尿路表型的人类遗传学方法
- 批准号:
10487492 - 财政年份:2014
- 资助金额:
$ 85.95万 - 项目类别:
The Columbia PCC for CureGN: the Cure Glomerulonephropathy network
哥伦比亚 PCC for CureGN:治愈肾小球肾病网络
- 批准号:
10212101 - 财政年份:2013
- 资助金额:
$ 85.95万 - 项目类别:
Advancing Clinical Research in Primary Glomerular Diseases (UM1)
推进原发性肾小球疾病 (UM1) 的临床研究
- 批准号:
8924174 - 财政年份:2013
- 资助金额:
$ 85.95万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 85.95万 - 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
- 批准号:
10836196 - 财政年份:2023
- 资助金额:
$ 85.95万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 85.95万 - 项目类别:
Contribution of non-canonical dopamine pathways to model-based learning
非典型多巴胺通路对基于模型的学习的贡献
- 批准号:
10607923 - 财政年份:2023
- 资助金额:
$ 85.95万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 85.95万 - 项目类别: