Discovering Affective Drug Combinations for Treating Covid-19
发现治疗 Covid-19 的有效药物组合
基本信息
- 批准号:10262603
- 负责人:
- 金额:$ 67.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressAffectiveAntiviral AgentsCOVID-19Cell LineCellsClinicalClinical TrialsCollaborationsCoronavirusDataData SetDrug CombinationsDrug ScreeningDrug TargetingHumanIn VitroInfectionMetabolicMetabolic PathwayMetabolismModelingPatientsPerformancePharmaceutical PreparationsPublishingSamplingTestingViralVirusbaseclinical developmentclinical investigationclinical predictorsclinically relevantcomputational pipelinesdrug candidatedrug discoveryexperimental studygenome-widehigh-throughput drug screeningin vivononhuman primatenovelpre-clinicalremdesivirtooltranscriptome sequencingtranscriptomics
项目摘要
Efforts of anti-COVID-19 drug discovery encompass hundreds of ongoing clinical trials and published pre-clinical drug screening studies, with many employing drug repurposing to meet urgent clinical needs. It is well established that effective viral therapies frequently employ combinations of drugs, however, as the space of possible drug combinations is prohibitively large, rational strategies for predicting effective combinations are needed. Viruses, including coronaviruses, are known to hijack various host metabolic pathways to facilitate their own proliferation, making targeting host metabolism an interesting anti-viral approach. Here, we aim to harness our expertise in genome-scale metabolic modeling (GEM) to address these challenges. Using both published data and our own RNA sequencing data on SARS-CoV-2-infected samples of cell lines and patients, we shall apply our published high-performance GEM-based computational pipeline to predict host metabolism-targeting anti-COVID-19 drugs and their combinations. We first aim to find treatments that effectively reverse the metabolic alterations induced by SARS-CoV-2 in the human host cells. Second, we shall predict their most synergistic combinations, and predict the combinations of metabolic drugs with emerging non-metabolic antiviral drugs under clinical investigation, such as remdesivir. In close collaboration with the Sumit Chanda lab, which has performed the largest high-throughput drug screening to date, we shall experimentally validate our predictions in vitro and in vivo. Our pipeline is the first that integrates drug screening and GEM analysis for antiviral drug discovery focusing on host metabolism. It will contribute to the anti-COVID-19 endeavor but also elucidate host metabolism-targeting as a novel and potentially generalizable antiviral strategy.
抗 COVID-19 药物发现工作包括数百项正在进行的临床试验和已发表的临床前药物筛选研究,其中许多研究采用药物再利用来满足紧急的临床需求。众所周知,有效的病毒疗法经常采用药物组合,然而,由于可能的药物组合空间非常大,因此需要合理的策略来预测有效的组合。众所周知,包括冠状病毒在内的病毒会劫持各种宿主代谢途径以促进自身增殖,这使得针对宿主代谢成为一种有趣的抗病毒方法。在这里,我们的目标是利用我们在基因组规模代谢模型(GEM)方面的专业知识来应对这些挑战。利用已发表的数据和我们自己的关于感染 SARS-CoV-2 的细胞系和患者样本的 RNA 测序数据,我们将应用我们已发表的基于 GEM 的高性能计算管道来预测宿主代谢靶向抗 COVID-19 药物以及它们的组合。我们的首要目标是找到有效逆转 SARS-CoV-2 在人类宿主细胞中引起的代谢改变的治疗方法。其次,我们要预测它们最具协同作用的组合,预测代谢药物与临床研究中的新兴非代谢抗病毒药物(如瑞德西韦)的组合。 Sumit Chanda 实验室进行了迄今为止最大规模的高通量药物筛选,我们将与该实验室密切合作,通过体外和体内实验验证我们的预测。我们的产品线是第一个将药物筛选和 GEM 分析相结合的产品线,用于专注于宿主代谢的抗病毒药物发现。它将有助于抗击 COVID-19 的努力,同时也阐明宿主代谢靶向作为一种新颖且可能普遍推广的抗病毒策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eytan Ruppin其他文献
Eytan Ruppin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eytan Ruppin', 18)}}的其他基金
Discovering Affective Drug Combinations for Treating Covid-19
发现治疗 Covid-19 的有效药物组合
- 批准号:
10702803 - 财政年份:
- 资助金额:
$ 67.26万 - 项目类别:
Discovering Affective Drug Combinations for Treating Covid-19
发现治疗 Covid-19 的有效药物组合
- 批准号:
10487116 - 财政年份:
- 资助金额:
$ 67.26万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fatigue and Fatigability in Veterans Following SARS-CoV-2 Infection
退伍军人感染 SARS-CoV-2 后的疲劳和容易疲劳
- 批准号:
10703633 - 财政年份:2023
- 资助金额:
$ 67.26万 - 项目类别:
Fatigue and Fatigability in Veterans Following SARS-CoV-2 Infection
退伍军人感染 SARS-CoV-2 后的疲劳和容易疲劳
- 批准号:
10703633 - 财政年份:2023
- 资助金额:
$ 67.26万 - 项目类别:
Individual differences in dementia spousal caregiver burden: A biobehavioral approach revision
痴呆症配偶照顾者负担的个体差异:生物行为方法修订
- 批准号:
10201213 - 财政年份:2019
- 资助金额:
$ 67.26万 - 项目类别:
Leveraging an electronic medical record infrastructure to identify primary care patients eligible for genetic testing for hereditary cancer and evaluate novel cancer genetics service delivery models
利用电子病历基础设施来识别有资格接受遗传性癌症基因检测的初级保健患者,并评估新型癌症遗传学服务提供模式
- 批准号:
10200396 - 财政年份:2018
- 资助金额:
$ 67.26万 - 项目类别:
Enhancing patient and organizational readiness for cardiovascular risk reduction among ethnic minority patients living with HIV
加强患者和组织为降低少数族裔艾滋病毒感染者的心血管风险做好准备
- 批准号:
10408469 - 财政年份:2018
- 资助金额:
$ 67.26万 - 项目类别: