Nonparametric methods for functional and translational genomics

功能和翻译基因组学的非参数方法

基本信息

项目摘要

Project Summary / Abstract Next generation sequencing has revealed the molecular landscape of cells in unprecedented detail. However, for the massively large-scale data produced by assays based on these technologies, informativeness is not only a function of wet-lab technology, but is critically also a function of the analytical pipelines that interpret the data. Our group has developed four statistical tools designed maximize the informativeness of these assays: 1) the Genome Structural Correction (GSC), a nonparametric model of genomic annotations used to assess the significance of relationships between features; 2) the Irreproducible Discovery Rate (IDR), an analogue of the FDR that leverages information from biological replicates; 3) Statmap, a comprehensive analysis pipeline for ChIP-seq and CAGE data that propagates statistical confidence from base-calling to peak-calling; and 4) Sparse Linear Isoform Discovery and abundance Estimation (SLIDE), an integrative statistical framework for the analysis of RNA-seq, cDNA, and other RNA data aimed at obtaining and quantifying de novo transcript models. These tools are designed to identify and characterize functional elements in genomes; they make minimal assumptions about the data they analyze, and therefore draw reliable conclusions and measures of statistical confidence. During the K99, we will expand and integrate our tools to extend the reach of statistical confidence throughout data interpretatoin. During the R00, my research will progress toward the inference and assessment of biological networks. Just as ortholog identification has become an essential step in developing animal models of human disease, multi-species network analysis promises to become a key step in interpreting the relationship between genome variation and phenotype. Many mutations, even gene deletions, do not reveal an obvious phenotype. This is due to network robustness, which often differs between closely related species. To understand these phenomena, we aim to: 1) develop standard statistical tools for network inference, and 2) develop "meta models" of networks that will permit general measures of network orthology. These two aims are tightly linked: we will need critically to characterize the semantics of biological networks to model them. Currently, some models lack consistent definitions of edges and weights, resulting in untestable representations of genomics data. you've managed to have a relaxing weekend! We will develop testable, quantitative models of biological processes, establishing a uniform semantics leveraging the rich theory of complex systems. Each of the tools above will play a key role, especially Statmap and the GSC, which will be needed to propagate statistical confidence into network analysis. Advances will have a transformative effect on our ability to map animal models of disease onto human biology. Nearly nine out of ten new drugs fail in human trials due to issues (e.g. toxicity) not present in animal models. Understanding the orthology not just of individual genes, but of entire biochemical networks will be essential to infer and correct for differences between models of disease and human biology. Solving this problem will be a major step forward in the march from “base-pairs to bedside”.
项目摘要 /摘要 下一代测序揭示了细胞的分子景观,以前所未有的细节。然而, 对于基于这些技术的测定产生的大规模大规模数据,信息性不是 仅是湿地lab技术的功能 数据。我们的小组开发了四种统计工具最大程度地设计了这些测定的信息: 1)基因组结构校正(GSC),一种用于评估的基因组注释的非参数模型 特征之间关系的重要性; 2)不复制的发现率(IDR),一个类似物 利用生物学的信息复制的FDR; 3)Statmap,全面的分析管道 对于Chip-Seq和Cage数据,可以传播统计置信度,从基本呼叫到峰值。和4) 稀疏线性同工型发现和丰度估计(幻灯片),这是一个集成的统计框架 RNA-SEQ,cDNA和其他RNA数据的分析旨在获得和量化从头转录本 型号。这些工具旨在识别和表征基因组中的功能元素。他们做 对他们分析的数据的最小假设,因此得出可靠的结论和衡量标题 统计信心。在K99期间,我们将扩展和集成我们的工具,以扩展统计的范围 整个数据解释中的信心。在R00期间,我的研究将朝着推理和 评估生物网络。正如直系同源识别已成为发展的重要步骤 人类疾病的动物模型,多物种网络分析有望成为关键的一步 解释基因组变异与表型之间的关系。许多突变,甚至基因缺失, 不要揭示明显的表型。这是由于网络鲁棒性,这通常在紧密之​​间有所不同 相关物种。要了解这些现象,我们的目标是:1)为网络开发标准统计工具 推断,以及2)开发网络的“元模型”,这些网络将允许一般的网络矫正措施。 这两个目标紧密相关:我们将需要批判性地将生物网络的语义描述为 建模他们。当前,某些模型缺乏边缘和权重的一致定义,导致无法测试 基因组数据的表示。您度过了一个轻松的周末!我们将开发可测试的 生物过程的定量模型,建立了一种统一的语义,利用了丰富的理论 复杂系统。上面的每种工具都将扮演关键角色,尤其是STATMAP和GSC,这将是 需要将统计信心传播到网络分析中。进步将产生变革性效果 关于我们将疾病动物模型映射到人类生物学的能力。十分之九的新药失败了 由于动物模型中不存在问题(例如毒性)引起的人类试验。不仅了解矫正 单个基因,但是整个生化网络中的差异至关重要 在疾病模型和人类生物学模型之间。解决这个问题将是3月向前迈出的一大步 从“底座到床边”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

James Bentley Brow...的其他基金

Nonparametric methods for functional and translational genomics
功能和翻译基因组学的非参数方法
  • 批准号:
    8280729
    8280729
  • 财政年份:
    2012
  • 资助金额:
    $ 24.9万
    $ 24.9万
  • 项目类别:
Nonparametric methods for functional and translational genomics
功能和翻译基因组学的非参数方法
  • 批准号:
    8532014
    8532014
  • 财政年份:
    2012
  • 资助金额:
    $ 24.9万
    $ 24.9万
  • 项目类别:

相似国自然基金

利用小型猪模型评价动脉粥样硬化易感基因的作用
  • 批准号:
    32370568
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
冠状动脉微血管疾病大动物模型中关键分子和心肌血流超声显像新技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    297 万元
  • 项目类别:
    重点项目
视神经脊髓炎谱系疾病非人灵长类动物模型构建及表型评价
  • 批准号:
    82071341
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
mTOR信号通路在耳蜗毛细胞发育和存活中的调控作用及其机制研究
  • 批准号:
    81900937
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
糖脂代谢紊乱疾病灵长类动物模型构建与DNA/RNA编辑介导的基因治疗方法开发
  • 批准号:
    91957122
  • 批准年份:
    2019
  • 资助金额:
    82.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
  • 批准号:
    10760193
    10760193
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
    $ 24.9万
  • 项目类别:
Computational dissection of cellular and network vulnerability in Alzheimer's and related dementias
阿尔茨海默病和相关痴呆症细胞和网络脆弱性的计算剖析
  • 批准号:
    10900995
    10900995
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
    $ 24.9万
  • 项目类别:
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
    $ 24.9万
  • 项目类别:
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
    $ 24.9万
  • 项目类别:
Optimizing blood biopsy in cancers with low mutation burden and high structural complexity
优化突变负荷低、结构复杂性高的癌症的血液活检
  • 批准号:
    10789700
    10789700
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
    $ 24.9万
  • 项目类别: