Genetics Of The Dominantly Inherited Periodic Fever Syndromes

显性遗传性周期性发热综合征的遗传学

基本信息

项目摘要

Background During the last several years we have studied five different dominantly-inherited autoinflammatory disorders. The first of these illnesses is the TNF receptor-associated periodic syndrome (TRAPS), which is characterized by prolonged attacks of fever, serositis, migratory rash and myalgia, arthritis, periorbital edema, conjunctivitis, and, in some patients, systemic amyloidosis. In 1999 we identified the first mutations in the gene (TNFRSF1A) encoding the 55 kDa tumor necrosis factor receptor (TNFR1) in families with dominantly-inherited recurrent fevers, and proposed the name TRAPS for this clinical condition. Initial mechanistic studies indicated a defect in the activation-induced shedding of the p55 (but not p75) TNF receptor, possibly leading to impaired homeostasis. Findings we published in the last year suggest an important additional mechanism of inflammation in these patients (see below). In 2002 we discovered dominantly-inherited de novo mutations in a second gene, initially named CIAS1 but now officially denoted NLRP3, in about 50% of patients with a disorder known as neonatal onset multisystem inflammatory disease (NOMID) or chronic infantile neurologic cutaneous and articular (CINCA) syndrome. Manifestations of NOMID/CINCA may include daily fevers, an urticaria-like skin rash, chronic aseptic meningitis, uveitis, papilledema, sensorineural hearing loss, mental retardation, patellar and epiphyseal long bone overgrowth, and systemic amyloidosis. Two milder conditions, familial cold autoinflammatory syndrome (FCAS) and Muckle-Wells syndrome (MWS), are caused by mutations in the same gene. NLRP3 encodes a protein, cryopyrin, that participates in a macromolecular complex called the inflammasome to regulate the activation of interleukin-1 (IL-1) beta. Collectively, all three diseases are known as the cryopyrin-associated periodic syndromes (CAPS). CAPS patients respond dramatically to inhibitors of IL-1 beta. A fifth dominantly-inherited autoinflammatory disorder, denoted the syndrome of pyogenic arthritis with pyoderma gangrenosum and acne (PAPA), is caused by mutations in a protein known as proline serine threonine phosphatase interacting protein (PSTPIP1). PAPA is characterized by episodes of sterile pyogenic arthritis, which can be destructive if not treated, formation of open, purulent ulcers of the skin (pyoderma gangrenosum), and severe cystic acne. In 2003 our group discovered that PSTPIP1 binds pyrin, the protein mutated in familial Mediterranean fever (FMF), and that disease-associated mutations in PSTPIP1 lead to more avid binding to pyrin, and increased IL-1 beta activation, relative to healthy controls. Progress During the Last Year Mechanism of inflammation in TRAPS: In May of this year we published a paper in PNAS that was the culmination of a several-year collaborative effort with Dr. Richard Siegel's group involving transfected cells, TRAPS knockin mice, and cells from TRAPS patients. Previous studies from our groups and others had shown that although there is the above-noted defect in ectodomain-cleavage of TRAPS-mutant TNF receptors, this is seen to a variable degree with different mutations and is cell-type dependent. Moreover, these mutant receptors bind TNF less well than wild-type receptors, and thus even if they do persist on the cell membrane after activation, it is not clear that retention of these receptor molecules would lead to repetitive stimulation, as we had originally hypothesized. Taken in the context of longer-term treatment failures with etanercept, the soluble p75:Fc fusion protein, in TRAPS, the pathogenesis of TRAPS has been an enigma. In the manuscript we published this year, we demonstrated that mutant TNFR1 accumulates intracellularly in peripheral blood mononuclear cells of TRAPS patients and in multiple cell types from two independent lines of knockin mice harboring TRAPS-associated TNFR1 mutations. Mutant TNFR1 did not function as a surface receptor for TNF but rather enhanced activation of MAPKs and secretion of proinflammatory cytokines upon stimulation with LPS. Enhanced inflammation depended on autocrine TNF secretion and WT TNFR1 in mouse and human myeloid cells but not in fibroblasts. Heterozygous TNFR1-mutant mice were hypersensitive to LPS-induced septic shock, whereas homozygous TNFR1-mutant mice resembled TNFR1-deficient mice and were resistant to septic shock. Thus WT and mutant TNFR1 act in concert from distinct cellular locations to potentiate inflammation in TRAPS. These findings establish a mechanism of pathogenesis in autosomal dominant diseases where full expression of the disease phenotype depends on functional cooperation between WT and mutant proteins and also may explain partial responses of TRAPS patients to TNF blockade. Gene expression profiling in CAPS: During the last year we completed a gene expression study in CAPS and have prepared a manuscript for submission. To understand the pathogenesis of CAPS we compared gene expression patterns in peripheral blool mononuclear cells (PBMCs) from 22 patients with active disease and 14 healthy children. We collected 16 paired samples from CAPS patients before and after anakinra (recombinant IL-1 receptor antagonist) treatment to identify transcripts responsive to IL-1 beta inhibition. We identified a gene expression signature that clearly distinguished CAPS patients from healthy controls. Many of the differentially expressed genes (DEGs) include transcripts related to regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion, and motility. Several DEGs, including transcripts related to regulation of reactive oxygen species (ROS), were validated by quantitative RT-PCR and by a functional study with primary cells from MWS patients and healthy controls. Using 17 CAPS samples and 66 non-CAPS samples, we created a set of gene expression-based models that differentiates CAPS patients from controls and from patients with other systemic inflammatory conditions. The CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 post-anakinra CAPS samples despite the fact that these CAPS patients were in clinical remission, thus validating the concept of gene expression profiling in the classification of inflammatory diseases and raising the possibility of IL-1 independent pathways in CAPS pathogenesis.
背景 在过去的几年中,我们研究了五种不同的显性遗传性自身炎症性疾病。 第一种疾病是TNF受体相关周期性综合征(TRAPS),其特征是长期发作的发烧、浆膜炎、游走性皮疹和肌痛、关节炎、眶周水肿、结膜炎,以及某些患者的系统性淀粉样变性。 1999 年,我们在显性遗传性反复发热家族中首次发现了编码 55 kDa 肿瘤坏死因子受体 (TNFR1) 的基因 (TNFRSF1A) 突变,并为这种临床病症命名为 TRAPS。 最初的机制研究表明,p55(但不是 p75)TNF 受体激活诱导的脱落存在缺陷,可能导致体内平衡受损。 我们去年发表的研究结果表明,这些患者存在一种重要的额外炎症机制(见下文)。 2002 年,我们在大约 50% 患有新生儿多系统炎症性疾病 (NOMID) 或慢性婴儿神经系统皮肤和关节疾病的患者中发现了第二个基因的显性遗传性从头突变,最初命名为 CIAS1,但现在正式命名为 NLRP3。 (CINCA)综合症。 NOMID/CINCA 的表现可能包括日常发烧、荨麻疹样皮疹、慢性无菌性脑膜炎、葡萄膜炎、视乳头水肿、感音神经性听力损失、智力低下、髌骨和骨骺长骨过度生长以及系统性淀粉样变性。 两种较温和的疾病,即家族性寒冷性自身炎症综合征 (FCAS) 和穆克韦尔斯综合征 (MWS),是由同一基因突变引起的。 NLRP3 编码一种蛋白质 Cryopyrin,它参与称为炎症小体的大分子复合物,调节白细胞介素 1 (IL-1) β 的激活。 所有这三种疾病统称为冷吡蛋白相关周期性综合征 (CAPS)。 CAPS 患者对 IL-1 β 抑制剂反应显着。 第五种显性遗传性自身炎症性疾病,称为坏疽性脓皮病和痤疮的化脓性关节炎综合征 (PAPA),是由脯氨酸丝氨酸苏氨酸磷酸酶相互作用蛋白 (PSTPIP1) 的蛋白质突变引起的。 PAPA 的特征是无菌性化脓性关节炎发作(如果不治疗的话可能具有破坏性)、形成开放性化脓性皮肤溃疡(坏疽性脓皮病)以及严重的囊性痤疮。 2003 年,我们的研究小组发现 PSTPIP1 与 Pyrin(家族性地中海热 (FMF) 中突变的蛋白质)结合,并且与健康对照相比,PSTPIP1 中与疾病相关的突变导致与 Pyrin 的更强烈结合,并增加了 IL-1 β 的激活。 去年的进展 TRAPS 中的炎症机制:今年 5 月,我们在《PNAS》上发表了一篇论文,这是与 Richard Siegel 博士的团队多年合作的成果,涉及转染细胞、TRAPS 敲入小鼠和来自 TRAPS 患者的细胞。 我们小组和其他人之前的研究表明,尽管 TRAPS 突变 TNF 受体的胞外域裂解存在上述缺陷,但不同突变的程度不同,并且是细胞类型依赖性的。 此外,这些突变受体与 TNF 的结合不如野生型受体,因此即使它们在激活后确实持续存在于细胞膜上,也不清楚这些受体分子的保留是否会导致重复刺激,正如我们最初假设的那样。 考虑到 TRAPS 中的可溶性 p75:Fc 融合蛋白依那西普长期治疗失败,TRAPS 的发病机制一直是个谜。 在我们今年发表的手稿中,我们证明突变型 TNFR1 在 TRAPS 患者的外周血单核细胞中以及来自两个独立的携带 TRAPS 相关 TNFR1 突变的敲入小鼠系的多种细胞类型中积累。 突变的 TNFR1 不具有 TNF 表面受体的功能,而是在 LPS 刺激后增强 MAPK 的激活和促炎细胞因子的分泌。 炎症的增强取决于小鼠和人骨髓细胞中的自分泌 TNF 分泌和 WT TNFR1,但在成纤维细胞中则不然。 杂合 TNFR1 突变小鼠对 LPS 诱导的感染性休克高度敏感,而纯合 TNFR1 突变小鼠与 TNFR1 缺陷小鼠相似,并且对感染性休克具有抵抗力。 因此,WT 和突变体 TNFR1 从不同的细胞位置协同作用,增强 TRAPS 中的炎症。 这些发现建立了常染色体显性遗传疾病的发病机制,其中疾病表型的完全表达取决于 WT 和突变蛋白之间的功能合作,也可以解释 TRAPS 患者对 TNF 阻断的部分反应。 CAPS 中的基因表达谱分析:去年,我们完成了 CAPS 中的基因表达研究,并准备了一份手稿供提交。 为了了解 CAPS 的发病机制,我们比较了 22 名活动性疾病患者和 14 名健康儿童的外周血单核细胞 (PBMC) 的基因表达模式。 我们从 CAPS 患者在阿那白滞素(重组 IL-1 受体拮抗剂)治疗前后收集了 16 个配对样本,以鉴定对 IL-1 β 抑制有反应的转录本。 我们确定了一个基因表达特征,可以清楚地区分 CAPS 患者与健康对照。 许多差异表达基因 (DEG) 包括与先天性和适应性免疫反应、氧化应激、细胞死亡、细胞粘附和运动的调节相关的转录本。 通过定量 RT-PCR 以及对来自 MWS 患者和健康对照的原代细胞的功能研究,验证了几种 DEG,包括与活性氧 (ROS) 调节相关的转录本。 使用 17 个 CAPS 样本和 66 个非 CAPS 样本,我们创建了一组基于基因表达的模型,将 CAPS 患者与对照组和患有其他全身炎症性疾病的患者区分开来。 CAPS 特定的基因表达特征正确分类了独立数据集中的所有 17 个样本。 该分类器还正确识别了 16 个阿那白滞后 CAPS 样本中的 15 个,尽管这些 CAPS 患者处于临床缓解期,从而验证了炎症性疾病分类中基因表达谱的概念,并提高了 IL-1 独立通路在炎症性疾病中的可能性。 CAPS发病机制。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Kastner其他文献

Daniel Kastner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Kastner', 18)}}的其他基金

Genetics, Pathophysiology, and Treatment of Dominant Autoinflammatory Diseases
显性自身炎症性疾病的遗传学、病理生理学和治疗
  • 批准号:
    8750705
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics, Pathophysiology, and Treatment of Recessive Autoinflammatory Diseases
隐性自身炎症性疾病的遗传学、病理生理学和治疗
  • 批准号:
    8565567
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
NHGRI/DIR Animal Research Infrastructure
NHGRI/DIR 动物研究基础设施
  • 批准号:
    8565610
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics, Pathophysiology, and Treatment of Recessive Autoinflammatory Diseases
隐性自身炎症性疾病的遗传学、病理生理学和治疗
  • 批准号:
    9152742
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetic Analysis of Complex Inflammatory Disorders
复杂炎症性疾病的遗传分析
  • 批准号:
    8350022
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics, Pathophysiology, and Treatment of Recessive Autoinflammatory Diseases
隐性自身炎症性疾病的遗传学、病理生理学和治疗
  • 批准号:
    8948387
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics, Pathophysiology, and Treatment of Dominant Autoinflammatory Diseases
显性自身炎症性疾病的遗传学、病理生理学和治疗
  • 批准号:
    10027215
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Clinical Support Services for the NIAMS Intramural Research Program
NIAMS 校内研究项目的临床支持服务
  • 批准号:
    7970186
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetic Analysis of Complex Inflammatory Disorders
复杂炎症性疾病的遗传分析
  • 批准号:
    10706155
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Clinical Support Services for the NIAMS Intramural Research Program
NIAMS 校内研究项目的临床支持服务
  • 批准号:
    7732845
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:

相似海外基金

Genetics Of Familial Mediterranean Fever and Related Conditions
家族性地中海热及相关病症的遗传学
  • 批准号:
    7592448
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics Of The Dominantly Inherited Periodic Fever Syndromes
显性遗传性周期性发热综合征的遗传学
  • 批准号:
    7732808
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics Of Familial Mediterranean Fever and Related Conditions
家族性地中海热及相关病症的遗传学
  • 批准号:
    8175275
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics Of Familial Mediterranean Fever and Related Conditions
家族性地中海热及相关病症的遗传学
  • 批准号:
    7964891
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
Genetics Of Familial Mediterranean Fever and Related Conditions
家族性地中海热及相关病症的遗传学
  • 批准号:
    7732799
  • 财政年份:
  • 资助金额:
    $ 38.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了