Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
基本信息
- 批准号:8883736
- 负责人:
- 金额:$ 34.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdenovirus VectorAffectAnimalsAtrophicBinding ProteinsBlood VesselsBrainBrain DrainsBrain NeoplasmsCaliberCellsClinicalClinical TreatmentClinical TrialsDataDiagnosisDiffuseDown-RegulationEdemaElectronsFDA approvedFunctional disorderGalectin 1GliomaGrowthHRAS geneHealthHumanHuman CharacteristicsImmuneImmune responseIn VitroIndolentInfiltrationInstitutional Review BoardsKnowledgeLaboratoriesLeadLentivirus VectorLymphMalignant NeoplasmsMediatingMichiganMicroscopyMitosisMolecularObstructionOperative Surgical ProceduresPathway interactionsPatient RecruitmentsPatientsPatternPhasePlatelet-Derived Growth FactorPolysaccharidesPositioning AttributeRadiation therapyRecurrenceResearchResistanceRodentStagingStem cellsSymptomsT cell responseTK GeneTestingTherapeuticTranslatingTravelTumor Cell InvasionUniversitiesWorkbrain tissuebrain volumechemotherapycytotoxicgene therapygene therapy clinical trialin vivoinhibitor/antagonistkillingsknock-downmigrationneoplastic cellnovelnovel therapeuticssmall hairpin RNAtreatment strategytumortumor growthtumor microenvironment
项目摘要
DESCRIPTION (provided by applicant): High grade gliomas are uniformly lethal, and resistant to surgery, chemotherapy and radiotherapy. The precise cellular and molecular mechanisms by which glioma cells disperse through the brain and grow to form macroscopic symptomatic tumor masses remains poorly understood. Herein we propose to test novel cellular, molecular and mechanistic hypotheses concerning glioma growth, and how to translate this knowledge into new anti-glioma therapeutics. Preliminary work from my laboratory, using confocal, electron and multiphoton microscopy has shown that glioma cells and human glioma stem cells disperse through the brain in vivo by traveling preferentially along the perivascular compartment, a potential migration network surrounding the brain microvasculature. As glioma cells move throughout the perivascular network they dislodge glial endfeet from blood vessels and compromise adjacent brain tissue; this is later replaced by tumor cells. We have also generated preliminary data that a glycan binding protein, galectin-1, is essential for this growth mechanism.
Down regulation of galectin-1 abolishes glioma growth in the brain in vivo, without affecting growth in vitro. These new data have several clinical consequences: (i) lymph drains from the brain through the perivascular compartment; its obstruction by gliomas would contribute to glioma-induced edema; (ii) human glioma tumors grow to large size before causing symptoms; glioma cell replacement of atrophied brain tissue could explain protracted and indolent tumor growth, and the delayed changes in total brain volume; (iii) inhibition of galectin-1 could represent a novel treatment of human gliomas. This proposal will (I) test the hypothesis that rodent and human glioma cells, and glioma stem cells grow preferentially along the perivascular space; (II) test the hypothesis that galectin-1 mediates glioma perivascular invasion and growth, and that inhibition of galectin-1 can be used as a novel therapeutic strategy; and (III) test the hypothesis that inhibition of galectin-1 will enhance specific anti-glioma immune responses. By progressing from glioma pathophysiology to molecular mechanisms of glioma migration to experimental therapeutics, we aim for our work to lead to novel early phase clinical translational trials for the treatment of human gliomas. Of note, our first clinical trial for gene therapy of human gliomas is approaching the start of patient recruitment (it was approved by FDA on 4/7/11 [IND 14574] and very recently by the University of Michigan IBC and IRB). Therefore, our laboratory is in a strong and realistic position to guide our research towards the translational implementation of novel clinical trials for this currently deadly human cancer.
描述(由申请人提供):高级别神经胶质瘤均具有致死性,并且对手术、化疗和放疗具有抵抗力。神经胶质瘤细胞在大脑中分散并生长形成宏观症状肿瘤块的精确细胞和分子机制仍然知之甚少。在此,我们建议测试有关神经胶质瘤生长的新细胞、分子和机制假设,以及如何将这些知识转化为新的抗神经胶质瘤疗法。我的实验室使用共焦、电子和多光子显微镜进行的初步工作表明,神经胶质瘤细胞和人类神经胶质瘤干细胞在体内分散在大脑中,优先沿着血管周围室(围绕大脑微血管系统的潜在迁移网络)移动。当神经胶质瘤细胞在血管周围网络中移动时,它们会将神经胶质末足从血管中移出并损害邻近的脑组织;随后被肿瘤细胞取代。我们还生成了初步数据,表明聚糖结合蛋白 galectin-1 对于这种生长机制至关重要。
下调半乳糖凝集素-1可消除体内脑胶质瘤的生长,而不影响体外生长。这些新数据有几个临床后果:(i)淋巴液从大脑通过血管周围室排出;神经胶质瘤的阻塞会导致神经胶质瘤引起的水肿; (ii) 人类神经胶质瘤在出现症状之前会长到很大;萎缩脑组织的神经胶质瘤细胞替代可以解释肿瘤长期且惰性的生长以及总脑体积的延迟变化; (iii) 半乳糖凝集素-1 的抑制可能代表人类神经胶质瘤的一种新治疗方法。该提案将(I)检验啮齿动物和人类神经胶质瘤细胞以及神经胶质瘤干细胞优先沿着血管周围空间生长的假设; (II)检验galectin-1介导胶质瘤血管周围侵袭和生长的假设,并且抑制galectin-1可以作为一种新的治疗策略; (III) 检验抑制半乳糖凝集素 1 将增强特异性抗神经胶质瘤免疫反应的假设。通过从神经胶质瘤病理生理学进展到神经胶质瘤迁移的分子机制再到实验治疗,我们的目标是我们的工作为人类神经胶质瘤的治疗带来新的早期临床转化试验。值得注意的是,我们的第一个人类神经胶质瘤基因治疗临床试验即将开始患者招募(该试验于 2011 年 4 月 7 日获得 FDA 批准 [IND 14574],最近获得密歇根大学 IBC 和 IRB 批准)。因此,我们的实验室处于强有力且现实的地位,可以指导我们的研究针对这种目前致命的人类癌症进行新型临床试验的转化实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro R Lowenstein其他文献
Pedro R Lowenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro R Lowenstein', 18)}}的其他基金
Role of the collagen receptor LAIR-1 in glioma progression and the tumor immune microenvironment
胶原蛋白受体LAIR-1在神经胶质瘤进展和肿瘤免疫微环境中的作用
- 批准号:
10462939 - 财政年份:2022
- 资助金额:
$ 34.02万 - 项目类别:
Role of the collagen receptor LAIR-1 in glioma progression and the tumor immune microenvironment
胶原蛋白受体LAIR-1在神经胶质瘤进展和肿瘤免疫微环境中的作用
- 批准号:
10581659 - 财政年份:2022
- 资助金额:
$ 34.02万 - 项目类别:
The role of collagen and its signaling mechanisms in glioma progression and invasion.
胶原蛋白及其信号传导机制在神经胶质瘤进展和侵袭中的作用。
- 批准号:
10539332 - 财政年份:2021
- 资助金额:
$ 34.02万 - 项目类别:
The role of collagen and its signaling mechanisms in glioma progression and invasion.
胶原蛋白及其信号传导机制在神经胶质瘤进展和侵袭中的作用。
- 批准号:
10387976 - 财政年份:2021
- 资助金额:
$ 34.02万 - 项目类别:
Neuroimmunology of Malignant Brain Tumors: Innate Mechanisms
恶性脑肿瘤的神经免疫学:先天机制
- 批准号:
9215708 - 财政年份:2016
- 资助金额:
$ 34.02万 - 项目类别:
Neuroimmunology of Malignant Brain Tumors: Innate Mechanisms
恶性脑肿瘤的神经免疫学:先天机制
- 批准号:
9115388 - 财政年份:2016
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
9039671 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
9250229 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
8480082 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Inhibiting glioma invasion using targeted nanoparticles
使用靶向纳米粒子抑制神经胶质瘤侵袭
- 批准号:
8573433 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
相似国自然基金
基于sIgA的V(D)J结构多样性探索腺病毒载体鼻喷新冠奥密克戎疫苗诱导的呼吸道粘膜免疫原性特征
- 批准号:82302607
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型腺病毒载体疫苗长效免疫机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
腺病毒载体新冠疫苗与灭活新冠疫苗诱导的免疫应答特征及序贯免疫策略研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于肠道腺病毒载体平台COVID-19粘膜疫苗的设计与筛选
- 批准号:82161138001
- 批准年份:2021
- 资助金额:150 万元
- 项目类别:国际(地区)合作与交流项目
纳米蛋白冠突破腺病毒载体疫苗预存免疫效应研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
VEGF-C/VEGFR3 AND LYMPHATIC TRANSPORT OF CHOLESTEROL FROM ATHEROSCLEROTIC PLAQUE
VEGF-C/VEGFR3 与动脉粥样硬化斑块中胆固醇的淋巴转运
- 批准号:
8630012 - 财政年份:2014
- 资助金额:
$ 34.02万 - 项目类别:
VEGF-C/VEGFR3 AND LYMPHATIC TRANSPORT OF CHOLESTEROL FROM ATHEROSCLEROTIC PLAQUE
VEGF-C/VEGFR3 与动脉粥样硬化斑块中胆固醇的淋巴转运
- 批准号:
8792548 - 财政年份:2014
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
9039671 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
8480082 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
8606906 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别: