Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
基本信息
- 批准号:10093089
- 负责人:
- 金额:$ 31.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-06 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:A-Form DNAAddressAffectAffinityAmino AcidsBase Excision RepairsBindingBinding ProteinsBinding SitesBiochemicalCancer EtiologyCancerousCellsChemistryComplexDNADNA BindingDNA Binding DomainDNA DamageDNA RepairDNA Repair EnzymesDNA Repair GeneDNA Repair PathwayDNA biosynthesisDNA damage checkpointDNA glycosylaseDNA lesionDNA metabolismDNA-Protein InteractionDNA-dependent protein kinaseDataDefectDiseaseEnvironmental CarcinogensEnzyme InteractionEnzymesEventExposure toFluorescenceFoundationsGenetic RecombinationGenomeGenomic InstabilityGoalsHandHereditary DiseaseIndividualInvestigationKineticsKnowledgeLabelLeadLengthLesionMalignant NeoplasmsMetabolicMethodologyModelingMonitorMutationN-terminalNucleotide Excision RepairPhosphopeptidesPhosphorylationPlayPositioning AttributePost-Translational Protein ProcessingProcessProtein Binding DomainProteinsRadiationReporterResearchRoleSingle-Stranded DNASiteSpecificityStructureSystemTestingTherapeutic InterventionTimeToxic Environmental SubstancesWinged HelixWorkXPA genebaseds-DNAenvironmental agentfluorophoregenome integrityrecruitrepairedreplication factor Aresponserole modelscaffoldsingle moleculexeroderma pigmentosum group A complementing protein
项目摘要
Exposure to environmental toxins, radiation and errors in endogenous DNA metabolism give rise to DNA
damage. Knowledge of the cellular DNA repair mechanisms that correct such DNA lesions are vital towards
combating genomic instability – a prevailing cause of cancers and associated disorders. To correct such errors,
double stranded DNA is unwound and the transiently opened single-stranded DNA (ssDNA) is protected and
coated by Replication Protein A (RPA), a high affinity multi-domain enzyme. Formation of RPA-ssDNA
complexes trigger the DNA repair checkpoint response and is a key step in activating most DNA repair pathways.
ssDNA-bound by RPA is handed-off to lesion-specific DNA repair proteins. The precise mechanisms of how this
functional specificity is achieved is poorly resolved. Towards addressing this gap in knowledge, our long-term
goals are to answer the following questions: a) RPA physically interacts with over two dozen DNA processing
enzymes; how are these interactions determined and prioritized? b) RPA binds to ssDNA with high affinity (KD
>10-10 M); how do DNA metabolic enzymes that bind to DNA with micromolar affinities remove RPA? c) Does
RPA play a role in positioning the recruited enzymes (with appropriate polarity) onto the DNA? d) How are the
DNA and protein interaction activities of RPA tuned by post translational modifications? To address these
questions, and to investigate the dynamics of RPA in the presence of multiple other DNA binding enzymes, we
have successfully developed an experimental strategy where the individual DNA binding domains (DBDs) of
RPA are labeled with a fluorophore. Upon binding to ssDNA, a robust change in fluorescence is observed and
thus serves as a real-time reporter of its dynamics on DNA. We achieved this through incorporation of noncanonical
amino acids and attachment of fluorophores using strain promoted click chemistry. Using this
methodology, we have uncovered how each domain within RPA binds/dissociates on ssDNA and present a new
paradigm for RPA function. There are four DBDs (A, B, C and D) in RPA and, for over three decades, DBD-A &
B have been thought to bind with highest affinity based on biochemical investigation of isolated DBDs. These
findings have served as a foundation for all models of RPA in DNA replication, repair and recombination. Our
work capturing RPA dynamics in the full-length context reveals the opposite, where DBDs A & B are highly
dynamic whereas DBDs C & D are stable. These startling findings completely alter the existing paradigm for
RPA function and form the basis of the proposed work investigating how specific RPA interacting proteins (RIPs)
gain access to DNA. Specifically, RPA modeling by NEIL1 and UNG2 during base excision repair (Aim 1) and
by XPA during nucleotide excision repair (Aim 2) will be investigated. In addition, the role of phosphorylation in
determining RPA specificity in DNA repair will be explored (Aim 3). Results from the proposed work will delineate
how RIPs interact with RPA, remodel its DBDs and gain access to the buried ssDNA.
暴露于环境毒素、辐射和内源性 DNA 代谢错误会产生 DNA
了解纠正此类 DNA 损伤的细胞 DNA 损伤修复机制对于
对抗基因组不稳定性——癌症和相关疾病的主要原因。
双链 DNA 解开,瞬时打开的单链 DNA (ssDNA) 受到保护,
由复制蛋白 A (RPA) 包被,RPA 是一种高亲和力的多结构域酶,可形成 RPA-ssDNA。
复合物触发 DNA 修复检查点反应,是激活大多数 DNA 修复途径的关键步骤。
RPA 结合的 ssDNA 被传递给损伤特异性 DNA 修复蛋白,其具体机制如下。
为了解决这一知识差距,我们的长期目标是实现功能特异性。
目标是回答以下问题:a) RPA 与超过两打 DNA 处理进行物理交互
b) RPA 以高亲和力 (KD) 结合到 ssDNA 上?
>10-10 M);以微摩尔亲和力与 DNA 结合的 DNA 代谢酶如何去除 RPA?
RPA 在将招募的酶(具有适当的极性)定位到 DNA 上方面发挥着作用 d) 效果如何?
通过翻译后修饰调节 RPA 的 DNA 和蛋白质相互作用活性?
问题,并研究 RPA 在多种其他 DNA 结合酶存在下的动态,我们
已成功开发出一种实验策略,其中单个 DNA 结合域 (DBD)
RPA 用荧光团标记,与 ssDNA 结合后,可以观察到荧光的强烈变化。
因此,作为 DNA 动态的实时报告者,我们通过结合非规范来实现这一目标。
使用菌株促进点击化学来进行氨基酸和荧光团的附着。
通过方法论,我们揭示了 RPA 中的每个域如何在 ssDNA 上结合/解离,并提出了一种新的
RPA 功能有四种 DBD(A、B、C 和 D),并且在三十多年来,DBD-A 和 D
根据对分离的 DBD 的生化研究,B 被认为具有最高的亲和力。
研究结果为 DNA 复制、修复和重组中的所有 RPA 模型奠定了基础。
在完整的上下文中捕获 RPA 动态的工作揭示了相反的情况,其中 DBD A 和 B 高度
DBD 是动态的,而 DBD C 和 D 是稳定的。这些令人惊讶的发现完全改变了现有的范式。
RPA 发挥作用,并构成研究特定 RPA 相互作用蛋白 (RIP) 如何工作的基础
具体来说,在碱基切除修复过程中通过 NEIL1 和 UNG2 进行 RPA 建模(目标 1)以及
此外,还将研究磷酸化在核苷酸切除修复过程中的作用(目标 2)。
将探索确定 RPA 在 DNA 修复中的特异性(目标 3)。
RIP 如何与 RPA 交互、重塑其 DBD 并访问埋藏的 ssDNA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Antony其他文献
Edwin Antony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Antony', 18)}}的其他基金
Coordination of DNA Metabolism by Replication Protein A
复制蛋白 A 协调 DNA 代谢
- 批准号:
10623523 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10589636 - 财政年份:2022
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10576598 - 财政年份:2022
- 资助金额:
$ 31.82万 - 项目类别:
Acquisition of an Optima Analytical Ultracentrifuge
购买 Optima 分析超速离心机
- 批准号:
10177290 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10334423 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
9981216 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10015322 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10238051 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER supplement
BER 和 NER 补充中损伤修复过程中 DNA 传递的机制
- 批准号:
9895224 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10810537 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10334423 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
9981216 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER supplement
BER 和 NER 补充中损伤修复过程中 DNA 传递的机制
- 批准号:
9895224 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Studies in Poxvirus Host Range Genes and Tropism
痘病毒宿主范围基因和趋向性研究
- 批准号:
9384142 - 财政年份:2016
- 资助金额:
$ 31.82万 - 项目类别:
Contribution of catabolite control protein A to group A streptococcal virulence
分解代谢物控制蛋白 A 对 A 组链球菌毒力的贡献
- 批准号:
8692634 - 财政年份:2011
- 资助金额:
$ 31.82万 - 项目类别: