Uncovering the molecular identity of retinal cell types, and their responses to nerve injury using single-cell transcriptomics
使用单细胞转录组学揭示视网膜细胞类型的分子特性及其对神经损伤的反应
基本信息
- 批准号:10087165
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAmacrine CellsAnimal ModelAxonBehavioralBrainBrain regionCell CommunicationCellsCensusesCerebral cortexCessation of lifeComplexComputer AnalysisComputing MethodologiesCustomDataData AnalysesDiseaseEventFelis catusFoundationsFunctional disorderGene ExpressionGeneticGenetic TranscriptionGenomicsGlaucomaGoalsGrowthHeterogeneityHistologicHistologyHumanImmuneIndividualInflammationInterventionIntervention StudiesInvestigationLabelLearningLocationMacacaMachine LearningMapsMeasurementMediatingMethodsMinorityModelingMolecularMolecular GeneticsMolecular ProfilingMorphologyMusNatural regenerationNerve CrushNeuraxisNeuronsNeurosciencesOptic NerveOptic Nerve InjuriesPatternPhysiologicalPhysiologyPlant RootsRecovery of FunctionReportingResourcesRetinaRetinal Ganglion CellsRoleStrokeStructureSurveysSurvival RateSystemTaxonomyTechnologyTherapeuticTherapeutic InterventionTissuesTumor-infiltrating immune cellsVertebratesVisionVisualWorkbasecell typecentral nervous system injurydesignganglion cellhuman modelin vivoinjuredinjury recoveryinnovationknock-downmolecular markernerve injuryneuroprotectionnovel markerprogramsrelating to nervous systemresilienceresponseretinal ganglion cell regenerationretinal neuronsingle-cell RNA sequencingstroke-like episodetooltranscriptomics
项目摘要
ABSTRACT
Neurons of the central nervous system (CNS) have been historically categorized into discrete "types" based on
structure, physiological responses, connectivity patterns, and molecular profiles. Heterogeneity can have other
consequences- e.g. recent studies have found that some neuronal types in the retina are more resilient than
other types to optic nerve injury, an event that leads to irrecoverable damage in vision.
My project combines cutting-edge single-cell genomic technologies, advanced computational data analysis and
molecular tools to define heterogeneity of neuronal types comprehensively, to connect molecular definitions to
histology, and explore the functional consequences of this heterogeneity during nerve injury. I will focus on a
tractable system, the mouse retina, which communicates visual responses to the brain. It is as complex as any
other region of the brain (containing ~120 neuronal types), but benefits from having a compact, accessible
structure, and experimental tools make it especially suited for detailed analyses. Building on my previous
postdoctoral work, this project will,
1) Complete the census of the mouse retina, which will the first for any CNS region, by inferring molecular
taxonomies of two of its most heterogenous classes (amacrines and ganglion cells) from data collected using
high-throughput single-cell RNA-sequencing. Using the mouse census, initiate a similar mapping of the
macaque retina, which is harder to access experimentally, but shares important features with humans that are
absent in mice.
2) Conduct a systematic investigation of cell-type specific responses in the retina to optic nerve injury. This
usually leads to a rapid, stereotypic death of retinal ganglion cells (RGCs), but a recent study by my colleagues
reported that some RGC types are more resilient than others. Here, using 1) as a resource, I will identify
factors, cell intrinsic and extrinsic, that make these RGC types resilient.
3) Selective resilience of cell types is now recognized as a feature of diseases like glaucoma and stroke.
Therapies therefore need to cater to different cell types. To learn more, and derive general principles, I will
examine the impact of known therapeutic interventions on the survival of different RGC types, and the
underlying molecular responses, within the optic nerve injury model.
Taken together, my project will derive substantial molecular information underlying neuronal heterogeneity in
the mouse and macaque retina and general principles for cell-type selective resilience following CNS injury in
mice. The lessons from this work will provide valuable guidance for similar studies in less accessible regions of
the brain (e.g. cerebral cortex).
抽象的
中枢神经系统 (CNS) 的神经元历史上根据以下条件被分为离散的“类型”:
结构、生理反应、连接模式和分子概况。异质性还可以有其他
后果-例如最近的研究发现,视网膜中的某些神经元类型比其他类型的神经元更有弹性
其他类型的视神经损伤,这种事件会导致视力不可恢复的损伤。
我的项目结合了尖端的单细胞基因组技术、先进的计算数据分析和
全面定义神经元类型异质性的分子工具,将分子定义与
组织学,并探索神经损伤期间这种异质性的功能后果。我将重点关注一个
易处理的系统,即小鼠视网膜,它向大脑传达视觉反应。它和任何事情一样复杂
大脑的其他区域(包含约 120 种神经元类型),但受益于拥有紧凑、可访问的
结构和实验工具使其特别适合详细分析。建立在我之前的基础上
博士后工作,该项目将,
1) 通过推断分子特征,完成小鼠视网膜的普查,这将是任何中枢神经系统区域的第一次普查
根据使用收集的数据对两个最异质的类别(无长突细胞和神经节细胞)进行分类
高通量单细胞 RNA 测序。使用小鼠普查,启动类似的映射
猕猴视网膜,通过实验很难获得,但与人类有共同的重要特征
小鼠中不存在。
2) 对视网膜中视神经损伤的细胞类型特异性反应进行系统研究。这
通常会导致视网膜神经节细胞(RGC)快速、刻板地死亡,但我同事最近的一项研究
据报道,某些 RGC 类型比其他类型更具弹性。在这里,使用 1) 作为资源,我将确定
使这些 RGC 类型具有弹性的细胞内在和外在因素。
3)细胞类型的选择性恢复能力现在被认为是青光眼和中风等疾病的一个特征。
因此,治疗需要适应不同的细胞类型。为了了解更多信息并得出一般原则,我将
检查已知治疗干预措施对不同 RGC 类型生存的影响,以及
视神经损伤模型中潜在的分子反应。
总而言之,我的项目将得出神经元异质性背后的大量分子信息
小鼠和猕猴视网膜以及中枢神经系统损伤后细胞类型选择弹性的一般原则
老鼠。这项工作的经验教训将为交通不便地区的类似研究提供宝贵的指导。
大脑(例如大脑皮层)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karthik Shekhar其他文献
Karthik Shekhar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karthik Shekhar', 18)}}的其他基金
Uncovering the molecular identity of retinal cell types, and their responses to nerve injury using single-cell transcriptomics
使用单细胞转录组学揭示视网膜细胞类型的分子特性及其对神经损伤的反应
- 批准号:
10132331 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Uncovering the molecular identity of retinal cell types, and their responses to nerve injury using single-cell transcriptomics
使用单细胞转录组学揭示视网膜细胞类型的分子特性及其对神经损伤的反应
- 批准号:
10362562 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
星爆无长突细胞在屈光发育及近视形成中的作用
- 批准号:82371090
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
可见紫光抑制小鼠视网膜VIP能无长突细胞发育增加近视易感性的作用机制研究
- 批准号:82371084
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Porf-2介导视神经损伤后无长突细胞Zn2+失稳态影响视网膜神经节细胞存活和轴突再生的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
光信号通过猴眼无长突细胞调控巩膜塑形与近视机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无长突细胞“NO-Zn2+”信号调控视神经损伤、修复及再生的分子机制
- 批准号:81870657
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Schlemm’s canal targeted-Tie2 knockdown as a mouse model of adult-onset ocular hypertension and glaucoma
施累姆氏管靶向 Tie2 敲除作为成人发病高眼压症和青光眼的小鼠模型
- 批准号:
10289450 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
A Single-Cell Transcriptome Atlas for Zebrafish Development
斑马鱼发育的单细胞转录组图谱
- 批准号:
10395982 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
A Single-Cell Transcriptome Atlas for Zebrafish Development
斑马鱼发育的单细胞转录组图谱
- 批准号:
9922372 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Uncovering the molecular identity of retinal cell types, and their responses to nerve injury using single-cell transcriptomics
使用单细胞转录组学揭示视网膜细胞类型的分子特性及其对神经损伤的反应
- 批准号:
10132331 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Uncovering the molecular identity of retinal cell types, and their responses to nerve injury using single-cell transcriptomics
使用单细胞转录组学揭示视网膜细胞类型的分子特性及其对神经损伤的反应
- 批准号:
10362562 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别: