Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD and TBI
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 和 TBI 的自杀检测和治疗结果
基本信息
- 批准号:10088135
- 负责人:
- 金额:$ 77.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBenefits and RisksBipolar DisorderCaringCause of DeathCharacteristicsClinicalClinical ResearchCodeComplexCoupledDataData SetDatabasesDecision MakingDetectionDiagnosticDiseaseDisease ManagementDisease OutcomeDisease ProgressionDisease modelDocumentationDrug CombinationsEffectivenessElectronic Health RecordEventFosteringGeneral PopulationGleanGoalsHealth ServicesHealthcareHospitalizationInterdisciplinary StudyInterventionInvestigationLabelLongterm Follow-upMachine LearningMajor Mental IllnessMapsMediatingMedicalMental disordersMentally Ill PersonsMethodologyMethodsMilitary PersonnelModelingNatural Language ProcessingObservational StudyOutcomePatient CarePatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacological TreatmentPharmacotherapyPhenotypePolypharmacyPopulationPositioning AttributePost-Traumatic Stress DisordersProviderPsychiatryPsychotherapyRegimenRelative RisksReportingResearch DesignResidual stateRiskRisk EstimateSafetySecondary PreventionSelf-Injurious BehaviorSourceSuicideSymptomsTimeTraumatic Brain InjuryTraumatic Stress DisordersTreatment ProtocolsTreatment outcomeUnited States Department of Veterans AffairsVeteransanalysis pipelinecohortcomorbiditycomparativecomparative effectiveness studycompare effectivenessdata modelingeffective therapyexperiencehealth recordhigh riskimprovedimproved outcomeinnovationlanguage processingmultiple drug usenatural languagenoveloff-label drugoutcome forecastpreventpsychosocialservice deliverysociodemographic factorsstress related disordersubstance misusesuicidal actsuicidal risktertiary preventiontherapy designtime usetreatment choicetreatment comparison
项目摘要
PROJECT SUMMARY
Post-traumatic stress disorder (PTSD) has complex profiles of co-occurring medical conditions (comorbidities)
and is associated with high risk of suicide, particularly among Veterans, in which it is a leading cause of death.
There is a critical lack of advancement in PTSD pharmacotherapy, as illustrated by increased use of off-label
medications and polypharmacy (multiple drugs used simultaneously). The consequent limited evidence on the
relative risks and benefits of treatments creates a crisis in PTSD management. Moreover, PTSD and its major
comorbidities [traumatic brain injury (TBI) and suicidality] often remain undocumented in electronic health
records (EHR). There is also poor predictability of disease outcomes since there are frequent changes in
pharmacological treatment and multiple modifying comorbidities. Our long-term goal is to improve diagnostics,
secondary/tertiary prevention, and treatment outcomes of PTSD and its comorbidities via enhanced EHR
utilization. To achieve our objectives, we will analyze EHR and administrative claims data from Veterans
Administration (VA) and non-VA databases, collectively covering >2M PTSD and >2M TBI patients.
Specifically, we aim to: (1) Identify undetected PTSD, TBI, and self-harm from EHRs (using machine learning
with and without natural language language processing) to guide health service improvements. (2) Predict
PTSD clinical course in the VA population through novel modeling of disease trajectories that account for
time-varying treatments and biases (3) Compare the effectiveness of PTSD psychotropic monotherapies,
polypharmacy, and psychotherapy to guide the choice of treatment for improved patient outcomes. By
enhancing and validating a machine learning approach developed by our team, we will impute unrecorded
PTSD, TBI, and self-harm from both datasets, and characterize factors associated with documentation
disparities. We will model diseases trajectories with enhanced latent class analysis, focusing on self-harm,
substance misuse, and psychiatric hospitalization in PTSD. With Local Control methodology innovations, we
will compare the risk of PTSD in veterans with and without comorbid TBI. Finally, we will perform the largest
comparative effectiveness studies (to date) of PTSD treatments on >100 monotherapy and polypharmacy
regimens plus psychotherapy interventions. These studies will provide high-quality evidence on the risk of
hospitalizations, substance misuse, and suicidal acts/self-harm. Successful completion of these investigations
will improve the quality of decision making for providers and patients, and guide improved service delivery to
the population of veterans and non-veterans with PTSD/TBI, and/or high risk of suicide.
项目概要
创伤后应激障碍 (PTSD) 具有复杂的共存医疗状况(合并症)
并且与高自杀风险相关,特别是对于退伍军人来说,这是导致死亡的主要原因。
创伤后应激障碍 (PTSD) 药物治疗严重缺乏进展,如标签外药物使用的增加就表明了这一点
药物治疗和多种药物治疗(同时使用多种药物)。随之而来的有限证据
治疗的相对风险和益处给创伤后应激障碍(PTSD)管理带来了危机。此外,PTSD 及其主要
合并症 [创伤性脑损伤 (TBI) 和自杀] 在电子医疗中通常没有记录
记录(电子病历)。由于疾病的频繁变化,疾病结果的可预测性也很差。
药物治疗和多种改变合并症。我们的长期目标是改善诊断、
通过增强的 EHR 来实现 PTSD 及其合并症的二级/三级预防和治疗结果
利用率。为了实现我们的目标,我们将分析退伍军人的电子病历和行政索赔数据
管理 (VA) 和非 VA 数据库,共同覆盖 > 200 万 PTSD 和 > 200 万 TBI 患者。
具体来说,我们的目标是:(1) 识别 EHR 中未发现的 PTSD、TBI 和自残行为(使用机器学习)
有或没有自然语言处理)来指导卫生服务的改进。 (2) 预测
通过新的疾病轨迹模型来解释 VA 人群的 PTSD 临床过程,该模型解释了
随时间变化的治疗方法和偏差 (3) 比较 PTSD 精神药物单一疗法的有效性,
联合用药和心理治疗来指导治疗选择,以改善患者的预后。经过
为了增强和验证我们团队开发的机器学习方法,我们将估算未记录的
来自两个数据集的 PTSD、TBI 和自残,以及与文档相关的特征因素
差异。我们将通过增强的潜在类别分析来模拟疾病轨迹,重点关注自残、
物质滥用和创伤后应激障碍 (PTSD) 中的精神病住院治疗。通过本地控制方法创新,我们
将比较有和没有共病 TBI 的退伍军人患 PTSD 的风险。最后我们将进行最大规模的表演
超过 100 种单一疗法和多药疗法的 PTSD 治疗效果比较研究(迄今为止)
治疗方案加上心理治疗干预。这些研究将提供关于风险的高质量证据
住院治疗、药物滥用和自杀行为/自残。顺利完成这些调查
将提高提供者和患者的决策质量,并指导改善服务提供
患有 PTSD/TBI 和/或高自杀风险的退伍军人和非退伍军人人口。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christophe G. Lambert其他文献
Machine learning elucidates electrophysiological properties predictive of multi- and single-firing human and mouse dorsal root ganglia neurons
机器学习阐明了预测人类和小鼠背根神经节多发和单发的电生理特性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nesia A. Zurek;Sherwin Thiyagarajan;Reza Ehsanian;A. Goins;Sachin Goyal;Mark Shilling;Christophe G. Lambert;Karin N Westlund;Sascha R. A. Alles - 通讯作者:
Sascha R. A. Alles
Christophe G. Lambert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christophe G. Lambert', 18)}}的其他基金
Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 的自杀检测和治疗结果
- 批准号:
10587966 - 财政年份:2022
- 资助金额:
$ 77.62万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10683510 - 财政年份:2020
- 资助金额:
$ 77.62万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10468527 - 财政年份:2020
- 资助金额:
$ 77.62万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10217890 - 财政年份:2020
- 资助金额:
$ 77.62万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10217890 - 财政年份:2020
- 资助金额:
$ 77.62万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10907966 - 财政年份:2020
- 资助金额:
$ 77.62万 - 项目类别:
A microaggregation framework for reproducible research with observational data: addressing biases while protecting personal identities
利用观察数据进行可重复研究的微聚合框架:在保护个人身份的同时解决偏见
- 批准号:
9306948 - 财政年份:2016
- 资助金额:
$ 77.62万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6693828 - 财政年份:2001
- 资助金额:
$ 77.62万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6582179 - 财政年份:2001
- 资助金额:
$ 77.62万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6341382 - 财政年份:2001
- 资助金额:
$ 77.62万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 77.62万 - 项目类别:
Patient Priorities in Lung Transplant: Quality of Life Outcomes to Inform Decision Making
肺移植中患者的优先事项:生活质量结果为决策提供依据
- 批准号:
10592041 - 财政年份:2023
- 资助金额:
$ 77.62万 - 项目类别:
Gender-Affirming Testosterone Therapy on Breast Cancer Risk and Treatment Outcomes
性别肯定睾酮疗法对乳腺癌风险和治疗结果的影响
- 批准号:
10912193 - 财政年份:2023
- 资助金额:
$ 77.62万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 77.62万 - 项目类别:
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
- 批准号:
10735930 - 财政年份:2023
- 资助金额:
$ 77.62万 - 项目类别: