A Nanoelectronic Strategy for Reliable Chronic Neural Recording
可靠的慢性神经记录的纳米电子策略
基本信息
- 批准号:10114717
- 负责人:
- 金额:$ 34.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAstrocytesAutopsyAwarenessBlood VesselsBlood capillariesBrainCellsChronicCicatrixClinicalDataDetectionDeteriorationDevelopmentDevicesDimensionsElectrodesElectronicsEngineeringEvolutionGoalsHistologyHourImageImplantImplanted ElectrodesIn VitroIndividualInflammationInterventionLabelLaboratoriesLeadLearningMechanicsMemoryMicrogliaMissionMonitorMotionMovementMusNeurologicNeuronsNeurophysiology - biologic functionNeurosciencesNoiseOperative Surgical ProceduresOutcomePerformancePhysiologicalPositioning AttributePublic HealthRattusResearchResolutionRodentRodent ModelSignal TransductionSiliconSliceStressStructureTechniquesTestingThickTimeTissuesUnited States National Institutes of HealthWorkbasebiomaterial compatibilitybrain machine interfacebrain tissuecellular imagingclinical applicationdesigndisorder preventionelectric impedanceflexibilityimplantationimprovedin vitro testingin vivoin vivo imagingin vivo two-photon imaginginnovationinterfacialmanmechanical propertiesmillisecondminimally invasivenanoelectronicsnervous system disorderneural circuitneural implantneuroprosthesisphysical propertypreventrelating to nervous systemresponsetemporal measurementtranslational impacttranslational neuroscience
项目摘要
The ability to reliably detect and track individual neurons with sufficient temporal resolution in time scale
commensurate with learning and memory is critical to both basic and translational neurosciences. Chronically
implanted neural electrodes constitute the only means to electrically interact with living brains at sub-
millisecond time scale and single neuron resolution, but suffer from persistent interface degradation that leads
to substantial recording condition changes in both the short and long term. There is a growing awareness that
addressing the dimension and mechanical properties of the neural probe might improve the interface. However,
neural probes that provide reliable recording for extended periods with no chronic detrimental effects pose
stringent requirement on the robustness and bio-compatibility of the device, which are yet to be developed.
The overall objective of this project is to achieve stable tissue-probe interface and reliable electrical recording
by developing, testing and optimizing nanoelectronic thread (NET) neural probes. This will be studied by
extensive in vitro characterization and in vivo in rodent models (mouse and rat) where the tissue-probe
interface and the neural probe recording conditions will be monitored and evaluated over chronical implantation
durations. Repeated in vivo imaging of the cellular and vascular evolution near the implanted probes will be
used together with postmortem histology studies and comprehensive characterization of the chronical
recording performance to assess and optimize the functionality of NET probes. The central hypothesis of the
project, on the basis of strong preliminary data from the applicant's laboratory, is that chronically reliable
electrical recording with non-degrading tissue-probe interface can be achieved by matching the neural probe
physical properties, in particular the dimensions, the surgical footprint and the mechanical flexibility, with that of
the cellular networks in living brain. The specific aims are to test this hypothesis: 1) Design and optimize NET
probes for long-term in-vivo structural stability; 2) Evaluate and optimize the long-term biocompatibility of the
NET probes; and 3) Verify and optimize long-term reliable recording and tracking of individual neurons. The
approach is innovative, in the applicants' opinion, because it represents a new and substantive departure from
the status quo by focusing on the aggressive reduction of the dimension and rigidity of the neural recording
devices into previously unattainable regimes. The long-term goal of this project is to identify key design
parameters that enable chronically stable integration between man-made devices and living brain tissue so
that these parameters can be applied to guide the design of a variety of neural implants for advancing
fundamental neuroscience and benefitting neurological condition treatments. The unprecedented chronic
reliability and stability in electrical recording expected to be achieved in this project will also lead to substantial
improvement in the brain-machine interface that can be applied to neuroprosthetics.
能够在时间尺度上以足够的时间分辨率可靠地检测和跟踪单个神经元
与学习和记忆相称对于基础神经科学和转化神经科学都至关重要。长期地
植入的神经电极是与活体大脑进行电交互的唯一手段
毫秒时间尺度和单神经元分辨率,但遭受持续的界面退化,导致
短期和长期的记录条件的重大变化。人们越来越意识到
解决神经探针的尺寸和机械特性可能会改善界面。然而,
神经探针可以长时间提供可靠的记录,并且不会产生慢性有害影响
对设备的鲁棒性和生物相容性提出了严格的要求,这些要求还有待开发。
该项目的总体目标是实现稳定的组织-探针接口和可靠的电记录
通过开发、测试和优化纳米电子线 (NET) 神经探针。这将由
广泛的体外表征和啮齿动物模型(小鼠和大鼠)的体内表征,其中组织探针
接口和神经探针记录条件将在长期植入过程中进行监测和评估
持续时间。对植入探针附近的细胞和血管进化进行重复体内成像
与死后组织学研究和慢性病的综合表征一起使用
记录性能以评估和优化 NET 探针的功能。的中心假设
该项目基于申请人实验室强有力的初步数据,是长期可靠的
通过匹配神经探针可以实现具有非降解性组织探针接口的电记录
物理特性,特别是尺寸、手术占地面积和机械灵活性,与
活体大脑中的细胞网络。具体目的是检验这个假设:1)设计和优化.NET
长期体内结构稳定性的探针; 2)评估和优化材料的长期生物相容性
网络探针; 3)验证和优化单个神经元的长期可靠记录和跟踪。这
申请人认为,这种方法是创新的,因为它代表了一种新的、实质性的背离
通过专注于神经记录的维度和刚性的积极减少来改变现状
设备进入以前无法实现的状态。该项目的长期目标是确定关键设计
使人造设备和活脑组织之间能够长期稳定整合的参数,以便
这些参数可用于指导各种神经植入物的设计,以促进进展
基础神经科学和有益的神经系统疾病治疗。史无前例的慢性病
该项目预期实现的电子记录的可靠性和稳定性也将带来巨大的收益
脑机接口的改进可应用于神经修复术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chong Xie其他文献
Chong Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
塑料光老化介导的微(纳)塑料形成和光解产物释放对雄性生殖内分泌的干扰研究
- 批准号:22376195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苯乙烯-丁二烯共聚物力化学老化的自由基捕获光环加成协同修复机制
- 批准号:22303065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Plasma neurofilament light chain as a potential disease monitoring biomarker in Wolfram syndrome
血浆神经丝轻链作为 Wolfram 综合征潜在疾病监测生物标志物
- 批准号:
10727328 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Role of glia in LRRK2 mediated dopaminergic neuron degeneration
胶质细胞在 LRRK2 介导的多巴胺能神经元变性中的作用
- 批准号:
10602889 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Molecular impact of endolysosomal dysfunction on neuron-glia communication pathways
内溶酶体功能障碍对神经元-胶质细胞通讯途径的分子影响
- 批准号:
10538113 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Role of endothelial cell senescence in age-related cardiomyopathy
内皮细胞衰老在年龄相关性心肌病中的作用
- 批准号:
10726050 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别: