TSH RECEPTOR MULTIMERIZATION
TSH 受体多聚化
基本信息
- 批准号:8597377
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:1,2-diacylglycerol1-Phosphatidylinositol 3-KinaseAKT Signaling PathwayARRB2AcetatesActinsAdenylate CyclaseAffectAffinityAgeAgonistAlanineAlexa594AntibodiesAntibody ActivationAntigen-Antibody ComplexArrestin Beta 1ArrestinsAspirate substanceAttentionAutoantibodiesAutoantigensAutoimmune DiseasesAutoimmune ProcessBathingBehaviorBindingBinding ProteinsBiochemicalBioinformaticsBiological AssayBiologyBuffersCalibrationCanis familiarisCarbon DioxideCaringCattleCaveolaeCell Culture TechniquesCell LineCell SurvivalCell membraneCell physiologyCell surfaceCellsCentrifugationCharacteristicsChillsChinese Hamster Ovary CellChloroformCholera Toxin Protomer BCholesterolClathrinCleaved cellCluster AnalysisCo-ImmunoprecipitationsColorComplementary DNAComplexComputer softwareCore FacilityCoupledCouplingCyberneticsCyclic AMPCysteineCytochalasin DCytolysisDataDatabasesDefectDegradation PathwayDepositionDetectionDetergentsDiffusionDigitoninDiglyceridesDimerizationDiscriminationDiseaseDissociationDithiothreitolDockingDown-RegulationDrynessDyesEndocytosisEnergy TransferEnvironmentEpithelial CellsEpitopesEquus caballusEthersExposure toFab ImmunoglobulinsFaceFelis catusFluoresceinFluorescein-5-isothiocyanateFluorescenceFluorescence Resonance Energy TransferFosteringFractionationG Protein-Coupled Receptor GenesGTP-Binding ProteinsGanglioside GM1GangliosidesGelGlassGlycolsGlycoproteinsGlycosphingolipidsGrantGray unit of radiation doseGrowthHeatingHemorrhageHigh Pressure Liquid ChromatographyHormonesHorseradish PeroxidaseHousingHumanHydrocortisoneHyperthyroidismIceImageImage AnalysisImageryImmuneImmunoassayImmunoblottingImmunoglobulin GImmunoprecipitationIn VitroIncubatedIndividualInitiator CodonInositolInositol PhosphatesInstructionInsulinInsulin-Dependent Diabetes MellitusInternationalInterphaseIsoleucineIsopropanolIsothiocyanatesKnock-outLH ReceptorsLabelLaboratoriesLateralLeadLearningLegal patentLengthLifeLigandsLinkLipidsLysineLysosomesMagnesium ChlorideManufacturer NameMeasurableMeasurementMeasuresMediatingMembraneMembrane MicrodomainsMethanolMethodsMicroscopeMicroscopyMilkMissionModelingMolecularMolecular ModelsMolecular WeightMonoclonal AntibodiesMovementMultiple SclerosisMusMutateMutationMutation AnalysisNatureNeedlesNuclearOilsOligonucleotidesOrganic solvent productOryctolagus cuniculusPDPK1 genePainPathway interactionsPatientsPenicillinsPhenanthrolinesPhenylalaninePhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphorylationPhosphotransferasesPhysiologicalPhysiologyPigmentsPlayPlug-inPolyvinylsPopulationPositioning AttributePreparationPrevalenceProblem SolvingProceduresProcessProlineProtease InhibitorProteinsProto-Oncogene Proteins c-aktProtocols documentationPublicationsPublishingRNARattusReadingReagentReceptor SignalingRecyclingRegulationRelative (related person)ReportingResearchResistanceResortRheumatoid ArthritisRoleRunningSalineSamplingScaffolding ProteinSecondary toSepharoseSeriesSerineSerumShapesShoesSignal PathwaySignal TransductionSignaling MoleculeSiteSlideSmall Interfering RNASolubilitySomatostatinSpecificitySpeedSphingolipidsSpottingsStagingStaining and LabelingStaining methodStainsStreptavidinStreptomycinStrokeStructural ModelsStructureStructure-Activity RelationshipSubfamily lentivirinaeSucroseSurfaceSystemT-LymphocyteTabletsTailTechniquesTemperatureTestingThreonineThyroid DiseasesThyroid GlandThyrotropin ReceptorTimeTissuesTransfectionTransferrinTranslatingTransmembrane DomainTromethamineTryptophanTubeTweensUniversitiesValineVesicleVirginiaWaterWestern BlottingWomanWorkantibody conjugateautoimmune thyroid diseasebasebeta-arrestincell growthcell motilitycell typecellular imagingcharge coupled device camerachemical reactioncoated pitcrosslinkdaltondichlorodifluoromethanedimerdisulfide bondexperiencefetal bovine serumflotillinfluorescence microscopefluorophoregene therapyhuman diseaseimprovedin vivoinstrumentinterestknock-downmenmillilitermolecular modelingmonomermutantnovelphospholipase C betaprototyperatiometricreceptorreceptor bindingreceptor expressionreceptor functionreceptor internalizationreconstitutionreconstructionresearch studythyroid associated ophthalmopathiestime usetrafficking
项目摘要
DESCRIPTION (provided by applicant):
The thyrotropin receptor (TSHR), expressed on the plasma membrane of thyroid epithelial cells as well as a variety of extra-thyroidal sites, is central to the regulation of thyroid growth and function. The TSHR is also the major autoantigen in the autoimmune hyperthyroidism known as Graves' disease where T cells and autoantibodies are directed at the TSHR. Our laboratory first demonstrated the existence of multimeric TSHR forms in native thyroid tissue and more recently we modeled such forms in transfected cells by using functionally tagged TSHRs and fluorescence resonance energy transfer (FRET). This competitive renewal application continues these studies with four specific aims:
Specific AIM 1 - To determine the transmembrane contact sites of TSHR multimers.
In previous studies we have determined that Y110 in the TSHR ectodomain is an important contact site for ectodomain dimerization and are currently pursuing complex mutational approaches, based on detailed molecular modeling, to determine the sites within the transmembrane domain which are responsible for the major multimeric forms of the full length TSHR.
Specific AIM 2 - To determine the role of TSH ligand in TSH receptor multimerization..
Our preliminary data have suggested that TSH reduces TSHR multimers in FRET and Co-IP experiments but the mechanism for this effect is unclear. We will, therefore, further evaluate the influence of TSH induced regulation of the TSHR using bioinformatic and biochemical approaches.
Specific AIM 3 - To illustrate that TSHRs reside within lipid rafts, are TSH ligand regulated, and
are primary centers of signal initiation.
Our data indicate that TSHR forms can be found in lipid raft compartments. Since lipid rafts are
centers for signal transduction, we hypothesize that TSHRs within lipid rafts are major signal initiators and will examine this concept in detail.
Specific AIM 4 - To test the hypothesis that TSHRs in lipid rafts are resistant to internalization.
Internalization leads to the termination of signal transduction and would normally be expected to control excessive hyperstimulation as seen in Graves' disease. Internalization of TSHRs is regulated by the binding of ¿-arrestin to phosphorylated receptors. Lipid rafts are centers of arrestin binding and in other receptor systems have been found to reduce the speed of receptor internalization. This may prolong receptor signaling which can have profound consequences in thyroid disease. We will therefore perform a detailed analysis including time-lapse imaging, to determine the role of arrestin and the signaling consequences.
Significance Of the study: The overall aim of this grant is to understand the structure-function
relationship of TSH receptor multimers and their role within and without lipid rafts. Understanding the biology of TSHRs may lead to better strategies to control excessive TSHR activation seen in human disease.
Relevance:
Thyroid disease is common amongst our VA patients and affects some 10% of the population with increasing prevalence with age. Autoimmune thyroid disease, while most common in women, often affects men to a worse degree. This is particularly true for Graves' eye disease. Hence, studies to
investigate the cause of autoimmune thyroid disease are highly relevant to the mission of the VA and in
addition serve as a model for all other autoimmune diseases including rheumatoid arthritis, multiple sclerosis and Type 1 Diabetes.
描述(由申请人提供):
促甲状腺素受体(TSHR)表达于甲状腺上皮细胞的质膜以及多种甲状腺外位点,对于甲状腺生长和功能的调节至关重要。TSHR 也是已知的自身免疫性甲状腺功能亢进症中的主要自身抗原。例如格雷夫斯病,其中 T 细胞和自身抗体针对 TSHR。我们的实验室首先证明了天然甲状腺组织中存在多聚体 TSHR 形式,最近我们对此类形式进行了建模。通过使用功能标记的 TSHR 和荧光共振能量转移 (FRET) 在转染细胞中进行这种竞争性更新应用继续这些研究,有四个具体目标:
具体目标 1 - 确定 TSHR 多聚体的跨膜接触位点。
在之前的研究中,我们已经确定 TSHR 胞外域中的 Y110 是胞外域二聚化的重要接触位点,目前正在基于详细的分子模型寻求复杂的突变方法,以确定跨膜域内负责主要多聚体形式的位点全长 TSHR。
具体目标 2 - 确定 TSH 配体在 TSH 受体多聚化中的作用。
我们的初步数据表明 FRET 和 Co-IP 实验中存在 TSH TSHR 多聚体,但这种效应的机制尚不清楚,因此,我们将使用生物信息学和生化方法进一步评估 TSH 诱导的 TSHR 调节的影响。
具体目标 3 - 说明 TSHR 驻留在脂筏内,受 TSH 配体调节,并且
是信号起始的主要中心。
我们的数据表明 TSHR 形式可以在脂筏隔室中找到,因为脂筏是。
作为信号转导中心,我们发现筏脂质内的 TSHR 是主要的信号引发剂,并将详细研究这个概念。
具体目标 4 - 检验脂筏中的 TSHR 抵抗内化的假设。
内化会导致信号转导的终止,并且通常会控制过度的过度刺激,如格雷夫斯病中所见,TSHR 的内化是通过 ¿ 的结合来调节的。 -抑制蛋白与磷酸化受体的结合是抑制蛋白结合的中心,在其他受体系统中已发现这可能会延长受体信号传导,从而对甲状腺疾病产生深远的影响。包括延时成像,以确定抑制蛋白的作用和信号传导后果。
研究意义:这项资助的总体目标是了解结构功能
了解 TSH 受体多聚体的关系及其在筏脂质内和外的作用可能会导致更好的策略来控制人类疾病中的过度 TSHR 激活。
关联:
甲状腺疾病在我们的 VA 患者中很常见,影响着大约 10% 的人口,并且随着年龄的增长,自身免疫性甲状腺疾病的患病率不断增加,虽然在女性中最常见,但对男性的影响程度往往更严重,格雷夫斯眼病尤其如此。因此,研究
调查自身免疫性甲状腺疾病的病因与 VA 的使命高度相关,并且
此外,它还可以作为所有其他自身免疫性疾病的模型,包括类风湿性关节炎、多发性硬化症和 1 型糖尿病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERRY Francis DAVIES其他文献
TERRY Francis DAVIES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERRY Francis DAVIES', 18)}}的其他基金
Thyrotropin Receptor, Thyrotropin and Mechanisms of Bone Loss
促甲状腺素受体、促甲状腺素与骨丢失机制
- 批准号:
10182095 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Thyrotropin Receptor, Thyrotropin and Mechanisms of Bone Loss
促甲状腺素受体、促甲状腺素与骨丢失机制
- 批准号:
9906208 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Thyrotropin Receptor, Thyrotropin and Mechanisms of Bone Loss
促甲状腺素受体、促甲状腺素与骨丢失机制
- 批准号:
9317142 - 财政年份:2017
- 资助金额:
-- - 项目类别:
相似海外基金
Mechanism and Function of the Supercomplex KARATE in Insulin Signaling
超级复合物空手道在胰岛素信号传导中的机制和功能
- 批准号:
10444290 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of Novel Therapeutic Molecules for Treatment of Squamous Head and Neck Cancers
开发治疗鳞状头颈癌的新型治疗分子
- 批准号:
10666868 - 财政年份:2022
- 资助金额:
-- - 项目类别:
PI3 Kinase Inactivation in Myelodysplastic Syndrome
骨髓增生异常综合征中的 PI3 激酶失活
- 批准号:
10518821 - 财政年份:2022
- 资助金额:
-- - 项目类别:
AKT as a resistance mechanism to cell cycle and endocrine therapies in ER+ breast cancer
AKT 作为 ER 乳腺癌细胞周期和内分泌治疗的耐药机制
- 批准号:
10599693 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Ac-SDKP in the Treatment of Cardiac Dysfunction in Hypertension or Ischemic
Ac-SDKP 治疗高血压或缺血性心脏功能障碍
- 批准号:
10336561 - 财政年份:2021
- 资助金额:
-- - 项目类别: