Using Electronic Health Records from a Large Clinical Data Research Network to Understand Cancer Burden and Cancer Risks Among Transgender and Gender Nonconforming (TGNC) Individuals
使用来自大型临床数据研究网络的电子健康记录来了解跨性别者和性别不合格 (TGNC) 个体的癌症负担和癌症风险
基本信息
- 批准号:10056679
- 负责人:
- 金额:$ 39.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAgeAgingAlcohol consumptionAlcohol or Other Drugs useAlcoholsBehavioralCancer BurdenCaringCause of DeathChronicClinicalClinical DataClinical ResearchCohort AnalysisCohort StudiesCoinCountyDataData SetData SourcesDevelopmentDiagnosisDiscriminationDiseaseEconomicsElectronic Health RecordFaceFloridaFundingFutureGenderGender IdentityGoldHealthHealth behaviorHormone useHospitalsHuman Papilloma Virus-Related Malignant NeoplasmHuman PapillomavirusIncidenceIndividualInformation RetrievalKnowledgeLiteratureLogistic ModelsMachine LearningMalignant NeoplasmsManualsMedicalMental HealthMethodsMinority GroupsModelingMonitorNatural Language ProcessingOutcomePatientsPerformancePharmaceutical PreparationsPhysiciansPopulationProceduresReportingResearchResearch PriorityRiskRisk BehaviorsRisk FactorsScreening for cancerSex BehaviorSexual and Gender MinoritiesSexually Transmitted DiseasesSourceStructureSubstance abuse problemSurveysSystemTobaccoTobacco useUnited StatesWorkage relatedaging populationbasecancer riskcancer statisticscancer typeclinical practicecohortcomorbiditycomputable phenotypesdata registrydeep learningdemographicsevidence basegender nonconforminghealth care service organizationhealth service usehigh riskinformatics toolmalignant breast neoplasmneoplasm registryphenotyping algorithmpopulation basedprogramsrecruitscreening programsocialsocial exclusionsocial stigmastemstructured datastudy populationtransgender
项目摘要
ABSTRACT
Transgender and gender nonconforming (TGNC) people face a disproportionate burden of adverse health
outcomes. Although there is a growing body of literature on the unique health issues among TGNC
populations, they remain severely underserved as existing data on TGNC health are scarce. Under-reporting
is common due to issues related to social and economic marginalization, stigma, and discrimination, leading to
challenges in obtaining population-based estimates since TGNC individuals are often unwilling to self-identify
and reluctant to participate in traditional surveys. Further, past TGNC research has primarily focused on
mental health, substance use and abuse, and sexual transmitted infections and diseases. There is limited data
available on age-related chronic conditions such as cancer, the second leading cause of death in the United
States. Nonetheless, cancer is one of the top research priorities among the TGNC population. With a rapidly
growing aging TGNC population, there is an urgent need to characterize the cancer burden among these
individuals and understand how cancer impact them differentially compared to non-TGNC individuals. On the
other hand, rapid adoption of electronic health record (EHR) systems has made longitudinal clinical data
available for research. EHRs contain not only important structured data, such as demographics, diagnoses,
procedures, and medications, but also unstructured clinical narratives such as physician’s notes. More than 80
percent of the clinical information is documented in clinical narratives, which contain more detailed patient
information including gender identity and cancer risk factors. Motivated by these observations and built upon
our previous studies on 1) the adequacy of TGNC gender identity terms, 2) clinical natural language
processing methods for information extraction, and 3) EHR-based cohort studies, we propose to conduct a
population-based cohort analysis to examine the cancer burden and risk factors among TGNC people using a
unique data source from a large network of EHRs—OneFlorida, one of the 13 PCORI-funded clinical data
research networks (CDRNs) contributing to the PCORnet. Using both structured and unstructured OneFlorida
data, we will first develop computable phenotypes to identify TGNC individuals and subsequently evaluate their
cancer risk. Our research is significant because: 1) no population-based cohort studies on cancer risk have
been conducted among the TGNC population. Our results will support the development of tailored, evidence-
based cancer screening programs for TGNC people; 2) our research will create a cohort of TGNC people that
can be not only tracked longitudinally in EHR but also recruited for future clinical studies; and 3) working with a
PCORnet CDRN makes our analysis framework generalizable to the overall PCORNet. Overall, the proposed
research will advance our knowledge in cancer among the aging TGNC population.
抽象的
跨性别者和性别不合格者 (TGNC) 面临着不成比例的不良健康负担
尽管关于 TGNC 独特健康问题的文献越来越多。
但由于 TGNC 健康状况的现有数据很少,他们的服务仍然严重不足。
由于与社会和经济边缘化、耻辱和歧视相关的问题,这种现象很常见,导致
由于 TGNC 个体往往不愿意自我认同,因此在获得基于人群的估计方面面临挑战
此外,过去的 TGNC 研究主要集中在传统调查上。
心理健康、药物使用和滥用以及性传播感染和疾病的数据有限。
适用于与年龄相关的慢性疾病,例如癌症,这是美国第二大死因
尽管如此,癌症仍是 TGNC 人群的首要研究重点之一。
随着 TGNC 人口老龄化的加剧,迫切需要描述这些人群的癌症负担
个人并了解癌症对他们的影响与非 TGNC 个人有何不同。
另一方面,电子健康记录(EHR)系统的快速采用使得纵向临床数据
可用于研究的电子病历不仅包含重要的结构化数据,例如人口统计、诊断、
程序和药物,还有非结构化的临床叙述,例如医生的笔记 超过 80 条。
% 的临床信息记录在临床叙述中,其中包含更详细的患者信息
包括性别认同和癌症风险因素在内的信息受到这些观察的启发并建立在这些观察的基础上。
我们之前的研究涉及 1) TGNC 性别认同术语的充分性,2) 临床自然语言
信息提取的处理方法,以及 3)基于 EHR 的队列研究,我们建议进行一项
基于人群的队列分析,使用以下方法检查 TGNC 人群的癌症负担和危险因素:
来自大型 EHR 网络的独特数据源 — OneFlorida,PCORI 资助的 13 个临床数据之一
为 PCORnet 做出贡献的研究网络 (CDRN) 使用结构化和非结构化 OneFlorida。
数据,我们将首先开发可计算的表型来识别 TGNC 个体,然后评估他们的
我们的研究意义重大,因为:1)没有基于人群的癌症风险队列研究。
我们的结果将支持定制的、证据性的开发。
2) 我们的研究将创建一群 TGNC 人员,
不仅可以在 EHR 中进行纵向跟踪,还可以招募用于未来的临床研究;3) 与
PCORnet CDRN 使我们的分析框架可推广到整个 PCORNet。
研究将增进我们对老龄化 TGNC 人群癌症的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10368562 - 财政年份:2022
- 资助金额:
$ 39.21万 - 项目类别:
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
A2E老化ARMS2/HTRA1型iPSC-RPE细胞的研究:个体化AMD发病机制初步探索
- 批准号:81400412
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhancing cognitive function in breast cancer survivors through community-based aerobic exercise training
通过社区有氧运动训练增强乳腺癌幸存者的认知功能
- 批准号:
10691808 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Vitamin D and Healthy Aging: Establishing the Sled Dog Sentinel for the Circumpolar North
维生素 D 与健康老龄化:为北极圈建立雪橇犬哨兵
- 批准号:
10649356 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Development and Evaluation of Portable Compendium of Psychophysical and Physiological Tests for Alzheimer's Disease and Related Dementias (ADRD)
阿尔茨海默病和相关痴呆症(ADRD)便携式心理物理和生理测试纲要的开发和评估
- 批准号:
10699349 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Promoting circadian rhythms to optimize gut-to-brain signaling for Alzheimer's disease
促进昼夜节律,优化阿尔茨海默病的肠道到大脑信号传导
- 批准号:
10717948 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
A Remotely Delivered Tai Ji Quan Intervention to Reduce Incidence of Falls in High Risk Community-Dwelling Older Adults
远程太极拳干预可降低高危社区老年人跌倒发生率
- 批准号:
10628517 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别: