DNA repair deficient cells for analysis

用于分析的 DNA 修复缺陷细胞

基本信息

  • 批准号:
    8142928
  • 负责人:
  • 金额:
    $ 121.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Successful completion of Phase I led to the development a panel of human cell lines, each deficient in one of the eleven DNA glycosylase enzymes. Depletion of target mRNA was as high as 95%, with corresponding depletion of target protein levels and enzymatic activity. To expand background diversity, the same shRNA lentiviruses were also used to develop parallel cell line panels in diferent tumor backgrounds, including glioma and breast cancer cell lines, demonstrating similar target mRNA depletion across different tumor cell backgrounds. Gene expression knockdown of the DNA glycosylases exemplify the impact of DNA repair defects on the human transcriptome. As an example of the far reaching potential for a panel of DNA repair deficient cell lines, we show that DNA glycosylase deficiency modulated both the transcriptome and epigenome, implicating some DNA glycoylases in methylation maintenance and genome expression diversity. Further, by combining both DNA glycosylase and BRCA1 knockdown, we have begun to investigate the requirement for DNA glycosylases in the effectiveness of PARP inhibitors in a BRCA1 knockdown tumor line. Phase II of the project wil utilize the successful work-flow paradigm optimized in Phase I for the development, functional characterization, cell banking and transcriptome analysis of isogenic human cel lines deficient in all known DNA repair genes. These include genes involved in Base Excision Repair, Direct Reversal of Damage, Mismatch Excision Repair, Nucleotide Excision Repair, Homologous Recombination, Non- homologous End-Joining, the modulation of nucleotide pools, DNA polymerases, editing and processing nucleases, the Rad6 pathway, Chromatin Structure, DNA Repair genes defective in diseases and conserved DNA Damage Response genes. The studies described in Aim 1 involve the preparation of the shRNA expressing lentiviruses, transduction and generation of three different human tumor cell knockdown panels for all known DNA repair genes (>150), followed by the mRNA expression characterization (qRT-PCR) of the knockdown cell lines and optimized scale-up and step-wise characterization to prepare for cell line distribution (Cell Banking). In aim 2, the cell lines will be validated for the expected DNA repair functional deficiency by protein expression profiling and genotoxin challenge. Finally (Aim 3), whole-genome transcriptional profiles will be conducted to quantitate transcriptional reprogramming mediated by changes in endogenous DNA repair capacity and where appropriate, following specific genotoxic stress. With the expectation that DNA repair capacity impacts basic cellular functions both spontaneously and in response to genotoxic stress, alters the transcriptional and epigenetic landscape and dictates the cellular response to stress, the development of a complete panel of isogenic DNA repair deficient cell lines across multiple backgrounds will be a valuable platform for gene and drug discovery, validation of inhibitor specificity and the identification of response biomarkers and novel targets for gene/drug synthetic-lethality combinations. The ready availability of this panel of cell lines will permit both academic and pharmaceutical scientists to study the molecular etiology of tumor genomic instability and to exploit it in oncology research. We envision robust market demand for the cell lines and information that relates to the global transcriptome. PUBLIC HEALTH RELEVANCE: In this Phase II proposal we plan to utilize the successful work-flow paradigm optimized in Phase I for the cell-line development and transcriptome analysis of isogenic human cells lines deficient in all known DNA repair genes. These highly characterized and annotated isogenic cell lines will form the basis for a platform for gene and drug discovery, validation of inhibitor specificity and the identification of response biomarkers and novel targets for gene/drug synthetic-lethality combinations.
描述(由申请人提供):第一阶段的成功完成导致了一组人类细胞系的开发,每个细胞系都缺乏十一种 DNA 糖基化酶中的一种。目标 mRNA 的去除率高达 95%,目标蛋白水平和酶活性也相应降低。为了扩大背景多样性,还使用相同的 shRNA 慢病毒在不同肿瘤背景(包括神经胶质瘤和乳腺癌细胞系)中开发平行细胞系组,证明不同肿瘤细胞背景中相似的靶标 mRNA 缺失。 DNA 糖基化酶的基因表达敲低例证了 DNA 修复缺陷对人类转录组的影响。作为一组 DNA 修复缺陷细胞系的深远潜力的一个例子,我们表明 DNA 糖基化酶缺陷调节转录组和表观基因组,暗示一些 DNA 糖基化酶参与甲基化维持和基因组表达多样性。此外,通过结合 DNA 糖基化酶和 BRCA1 敲低,我们已开始研究在 BRCA1 敲低肿瘤系中 PARP 抑制剂的有效性对 DNA 糖基化酶的需求。该项目的第二阶段将利用第一阶段优化的成功工作流程范式,对缺乏所有已知 DNA 修复基因的同基因人类细胞系进行开发、功能表征、细胞库和转录组分析。这些包括参与碱基切除修复、直接逆转损伤、错配切除修复、核苷酸切除修复、同源重组、非同源末端连接、核苷酸池调节、DNA聚合酶、编辑和加工核酸酶、Rad6途径、染色质结构、疾病中缺陷的 DNA 修复基因和保守的 DNA 损伤反应基因。目标 1 中描述的研究涉及制备表达 shRNA 的慢病毒、转导和生成针对所有已知 DNA 修复基因 (>150) 的三种不同的人类肿瘤细胞敲除组,然后进行 mRNA 表达表征 (qRT-PCR)。敲低细胞系并优化放大和逐步表征,为细胞系分布做好准备(细胞库)。在目标 2 中,将通过蛋白质表达谱和基因毒素挑战来验证细胞系是否存在预期的 DNA 修复功能缺陷。最后(目标 3),将进行全基因组转录谱来定量由内源 DNA 修复能力的变化介导的转录重编程,并在适当的情况下,在特定的基因毒性应激后进行。预期 DNA 修复能力会自发地和响应基因毒性应激影响基本细胞功能,改变转录和表观遗传景观并决定细胞对应激的反应,开发了跨多个背景的完整的同基因 DNA 修复缺陷细胞系组将成为基因和药物发现、抑制剂特异性验证以及反应生物标志物和基因/药物合成致死组合的新靶点识别的有价值的平台。这组细胞系的现成可用将使学术和药物科学家能够研究肿瘤基因组不稳定性的分子病因学,并在肿瘤学研究中利用它。我们预计市场对细胞系和与全球转录组相关的信息有强劲的需求。 公共健康相关性:在第二阶段提案中,我们计划利用第一阶段优化的成功工作流程范式,对缺乏所有已知 DNA 修复基因的同基因人类细胞系进行细胞系开发和转录组分析。这些高度表征和注释的同基因细胞系将构成基因和药物发现、抑制剂特异性验证以及反应生物标志物和基因/药物合成致死组合的新靶标的识别平台的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay George其他文献

Jay George的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay George', 18)}}的其他基金

Barcoded human cells engineered with heterozygous genetic diversity to uncover toxicodynamic variability
具有杂合遗传多样性的条码人类细胞可揭示毒理学变异性
  • 批准号:
    10669812
  • 财政年份:
    2021
  • 资助金额:
    $ 121.43万
  • 项目类别:
Barcoded human cells engineered with heterozygous genetic diversity to uncover toxicodynamic variability
具有杂合遗传多样性的条码人类细胞可揭示毒理学变异性
  • 批准号:
    10634868
  • 财政年份:
    2021
  • 资助金额:
    $ 121.43万
  • 项目类别:
Immuno-CometChip for Human Skin Basal Cell Genotoxicity Testing
用于人体皮肤基底细胞遗传毒性测试的免疫彗星芯片
  • 批准号:
    9136447
  • 财政年份:
    2016
  • 资助金额:
    $ 121.43万
  • 项目类别:
Quantitative Real-Time DNA Repair Analysis Tools
定量实时 DNA 修复分析工具
  • 批准号:
    8646260
  • 财政年份:
    2014
  • 资助金额:
    $ 121.43万
  • 项目类别:
Discovery Tools for Chemotherapy Resistance to Cell Death.
发现化疗抵抗细胞死亡的工具。
  • 批准号:
    8201177
  • 财政年份:
    2012
  • 资助金额:
    $ 121.43万
  • 项目类别:
DNA repair deficient cells for analysis
用于分析的 DNA 修复缺陷细胞
  • 批准号:
    7999775
  • 财政年份:
    2009
  • 资助金额:
    $ 121.43万
  • 项目类别:
DNA repair deficient human cells for genomic variation analysis
DNA修复缺陷的人类细胞用于基因组变异分析
  • 批准号:
    7669435
  • 财政年份:
    2009
  • 资助金额:
    $ 121.43万
  • 项目类别:
New Sensitive Detection of Food and Water Borne Pathogens
食品和水源性病原体的新灵敏检测
  • 批准号:
    6990807
  • 财政年份:
    2005
  • 资助金额:
    $ 121.43万
  • 项目类别:
Development of a standard high throughput comet assay
标准高通量彗星测定的开发
  • 批准号:
    7287399
  • 财政年份:
    2002
  • 资助金额:
    $ 121.43万
  • 项目类别:
DIAGNOSING MUTATIONS W/ THERMOPHILIC DNA REPAIR ENZYMES
使用嗜热 DNA 修复酶诊断突变
  • 批准号:
    6016540
  • 财政年份:
    1999
  • 资助金额:
    $ 121.43万
  • 项目类别:

相似国自然基金

ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
  • 批准号:
    82303993
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
  • 批准号:
    82371567
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
  • 批准号:
    82302868
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
  • 批准号:
    82373461
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Repair of DNA ends with adducts
用加合物修复 DNA 末端
  • 批准号:
    10587000
  • 财政年份:
    2023
  • 资助金额:
    $ 121.43万
  • 项目类别:
Gender-Affirming Testosterone Therapy on Breast Cancer Risk and Treatment Outcomes
性别肯定睾酮疗法对乳腺癌风险和治疗结果的影响
  • 批准号:
    10912193
  • 财政年份:
    2023
  • 资助金额:
    $ 121.43万
  • 项目类别:
Clonal hematopoiesis and therapy-emergent myeloid neoplasms in patients with ovarian cancer
卵巢癌患者的克隆性造血和治疗引起的骨髓肿瘤
  • 批准号:
    10661251
  • 财政年份:
    2023
  • 资助金额:
    $ 121.43万
  • 项目类别:
Sex-specific regulation of microRNAs in Alzheimer Disease
阿尔茨海默病中 microRNA 的性别特异性调控
  • 批准号:
    10667123
  • 财政年份:
    2023
  • 资助金额:
    $ 121.43万
  • 项目类别:
Regulation of SPRTN protease and SPRTN-mediated DNA-Protein Crosslink Repair
SPRTN 蛋白酶的调节和 SPRTN 介导的 DNA-蛋白质交联修复
  • 批准号:
    10446610
  • 财政年份:
    2022
  • 资助金额:
    $ 121.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了