Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
基本信息
- 批准号:10023161
- 负责人:
- 金额:$ 37.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnaerobic BacteriaAnimal ModelAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsBacillusBacteriaBiocompatible MaterialsBiological AvailabilityBlood CellsCationsCenters for Disease Control and Prevention (U.S.)Cessation of lifeClostridium difficileDevelopmentEpidemicEscherichia coliEtiologyFoundationsGenerationsGoalsGram-Negative BacteriaHamstersHost DefenseHydrophobicityInfectionIntestinesLeadLightLiteratureMammalian CellMembraneMetronidazoleModelingModificationMusOralPeptidesPolymersPredispositionPseudomembranous ColitisPublishingRecurrenceRelapseReportingReproduction sporesResearchResistanceResistance developmentRisk FactorsSeriesTestingToxinTreatment EfficacyUrsidae FamilyVancomycinWorkantibiotic-associated diarrheaantimicrobial drugbasebiodegradable polymercombatcostcytotoxicitydesigngut microbiotaimprovedindexinginnovationmicrobialmouse modelnovelpathogenic bacteriapolycarbonatepreventsound
项目摘要
Clostridium difficile is a Gram-positive, spore-forming anaerobic and toxin-producing bacillus. It is the most
common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous co-
litis with about 453,000 cases and 29,000 deaths yearly in the U.S. as reported by CDC in 2015. Central to
predisposition to C. difficile infection (CDI) is the disruption of the gut microbiota by antibiotics. The first-line
therapy for the treatment of CDI is oral metronidazole or vancomycin. None of these is fully effective, and an
estimated 15-35% of those infected with C. difficile relapse following treatment. The recently approved fidax-
omicin has improved efficacy in preventing recurrence, but its high cost precludes its routine use. As such, novel
antibiotic agents with low cost and high efficacy are desperately needed to address the alarming CDI epidemic.
We recently have developed a new series of biodegradable polymer biomaterials-polycarbonates. These pol-
ymers, containing both hydrophobic and cationic groups, mimic host-defense peptides (HDPs) and kill bacteria
through disruption of bacterial membranes. Importantly, these polymers can be orally administered and eradicate
C. difficile infection in mice with high efficacy which is even superior to vancomycin. Furthermore, these polymers
are not active against Gram-negative bacteria, and therefore they do not destroy commensal Gram-negative
intestinal microbes such as E. coli. To the best of our knowledge, this is the first example of biodegradable
polymers with oral bioavailability against C. difficile to date. Compared to vancomycin, these polymers are easy
to synthesize in a large scale with very low cost, and highly amendable to optimization, making them very prom-
ising for antibiotic therapy against C. difficile. Our long-term goal is to develop biodegradable polycarbonates as
new generation of antibiotics against C. difficile. The objective of this project is to further develop these biode-
gradable polymers with greater potency through optimization. As such, based on our preliminary results, we will
first design and synthesize new generation of polycarbonate derivatives bearing optimized hydrophobic and
cationic groups that can kill C. difficile with higher potency and selectivity. Following that, we will determine
antibacterial activity and selectivity of the newly designed polymers against C. difficile. The most potent polymers
(MIC < 0.5 µg/mL, Selective Index (SI): HC50/MICC.difficile > 2000 for blood cells, IC50/MICC.difficile > 250 for mamma-
lian cells) will be further explored for their mechanism of action. Subsequently, we will also evaluate therapeutic
efficacy of these most potent polycarbonates in animal models (mouse model and acute hamster model) of CDI.
Our project is significant, because we are tackling the infection from the significant bacterial strain C. difficile,
and we are developing novel polymeric biomaterials. We also believe our project is innovative, as we are de-
veloping a new class of biodegradable and orally available polycarbonates, which have already showed remark-
able efficacy and selectivity, and could be synthesized in large scale with low cost. As a result, a new generation
of antibiotic agents combating C. difficile will be resulted from our project.
艰难梭菌是一种革兰氏阳性、产芽孢、厌氧、产毒的杆菌。
院内抗生素相关性腹泻的常见原因及伪膜性腹泻的病因
据 CDC 2015 年报告,美国每年约有 453,000 例病例和 29,000 例死亡。
艰难梭菌感染 (CDI) 的易感性是抗生素对肠道微生物群的破坏。
治疗 CDI 的疗法是口服甲硝唑或万古霉素,这些药物均不完全有效,并且是一种有效的治疗方法。
估计 15-35% 的艰难梭菌感染者在接受最近批准的 fidax-治疗后会复发。
omicin 可以提高预防复发的功效,但其成本较高,因此无法常规使用。
迫切需要低成本、高效的抗生素药物来应对令人震惊的 CDI 疫情。
我们最近开发了一系列新的可生物降解高分子生物材料——聚碳酸酯。
ymer 含有疏水基团和阳离子基团,可模拟宿主防御肽 (HDP) 并杀死细菌
重要的是,这些聚合物可以通过口服给药并根除。
对小鼠感染艰难梭菌的疗效甚至优于万古霉素。
对革兰氏阴性菌没有活性,因此它们不会破坏共生的革兰氏阴性菌
据我们所知,这是第一个可生物降解的例子。
迄今为止,与万古霉素相比,这些聚合物具有针对艰难梭菌的口服生物利用度。
以非常低的成本进行大规模合成,并且高度易于优化,使它们非常有前景
我们的长期目标是开发可生物降解的聚碳酸酯作为针对艰难梭菌的抗生素治疗。
该项目的目标是进一步开发这些生物降解药物。
因此,根据我们的初步结果,我们将通过优化获得具有更大效力的可分级聚合物。
首次设计并合成新一代聚碳酸酯衍生物,具有优化的疏水性和
能够以更高的效力和选择性杀死艰难梭菌的阳离子基团随后,我们将确定。
新设计的聚合物对艰难梭菌的抗菌活性和选择性。
(MIC < 0.5 µg/mL,选择指数 (SI):血细胞 HC50/MICC.difficile > 2000,哺乳动物 IC50/MICC.difficile > 250
随后,我们还将进一步探讨其治疗作用。
这些最有效的聚碳酸酯在 CDI 动物模型(小鼠模型和急性仓鼠模型)中的功效。
我们的项目意义重大,因为我们正在解决重要菌株艰难梭菌的感染,
我们正在开发新型聚合物生物材料,我们也相信我们的项目是创新的,因为我们正在开发。
开发出一类新的可生物降解且可口服的聚碳酸酯,它已经显示出显着的效果:
具有高效性和选择性,并且可以以低成本大规模合成,从而产生新一代。
我们的项目将产生对抗艰难梭菌的抗生素药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianfeng Cai其他文献
Jianfeng Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianfeng Cai', 18)}}的其他基金
Characterization and Inhibition of protein-protein interactions involving Staphylococcus aureus GpsB
金黄色葡萄球菌 GpsB 蛋白-蛋白相互作用的表征和抑制
- 批准号:
10317549 - 财政年份:2021
- 资助金额:
$ 37.38万 - 项目类别:
Characterization and Inhibition of protein-protein interactions involving Staphylococcus aureus GpsB
金黄色葡萄球菌 GpsB 蛋白-蛋白相互作用的表征和抑制
- 批准号:
10437907 - 财政年份:2021
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
10460598 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
10215510 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
9907591 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
10685381 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Antimicrobial agents derived from AApeptide biomaterials
源自AA肽生物材料的抗菌剂
- 批准号:
10396434 - 财政年份:2015
- 资助金额:
$ 37.38万 - 项目类别:
Alpha-AApeptides as a novel class of antimicrobial biomaterials
α-AA肽作为一类新型抗菌生物材料
- 批准号:
9260896 - 财政年份:2015
- 资助金额:
$ 37.38万 - 项目类别:
Antimicrobial agents derived from AApeptide biomaterials
源自AA肽生物材料的抗菌剂
- 批准号:
10610385 - 财政年份:2015
- 资助金额:
$ 37.38万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The role of anaerobic microbiota in cystic fibrosis airway disease trajectory
厌氧微生物群在囊性纤维化气道疾病轨迹中的作用
- 批准号:
10716654 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Central metabolism of Salmonella in the inflamed gut
发炎肠道中沙门氏菌的中枢代谢
- 批准号:
10677940 - 财政年份:2022
- 资助金额:
$ 37.38万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10487660 - 财政年份:2022
- 资助金额:
$ 37.38万 - 项目类别:
Impact of Microbial Dysbiosis on MAIT Cell Tissue Repair Program after Acute HIV Infection
急性 HIV 感染后微生物失调对 MAIT 细胞组织修复程序的影响
- 批准号:
10481899 - 财政年份:2022
- 资助金额:
$ 37.38万 - 项目类别:
Central metabolism of Salmonella in the inflamed gut
发炎肠道中沙门氏菌的中枢代谢
- 批准号:
10411509 - 财政年份:2021
- 资助金额:
$ 37.38万 - 项目类别: