Regulation of innate immune cell responses through cell-to-cell transfer of mitochondria
通过线粒体细胞间转移调节先天免疫细胞反应
基本信息
- 批准号:10018959
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdipocytesAdipose tissueAdoptive Cell TransfersAdultAffectAwardBiological AssayBiomedical ResearchBlood CirculationBone Marrow TransplantationCellsChildClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesCore FacilityCreativenessCytokine ActivationDataDevelopmentDietDiseaseEXT1 geneEnergy MetabolismEnvironmentFatty acid glycerol estersFlow CytometryForeign BodiesGenesGenetic ModelsGenus HippocampusGlucoseHealthcare SystemsHeart DiseasesHeparitin SulfateHigh Fat DietHomeostasisHumanHypertrophyImmuneImmunologicsImmunologyImpairmentIn VitroInflammationInflammatoryKnock-outLaboratoriesLaboratory StudyLeadLinkLipidsMalignant NeoplasmsMentorsMetabolicMetabolic DiseasesMetabolismMitochondriaMusNon-Insulin-Dependent Diabetes MellitusNonesterified Fatty AcidsObese MiceObesityPathologicPathologyPathway interactionsPhysiciansPhysiological ProcessesPopulationProcessPublic HealthPublicationsRegulationReporterResearchResourcesRoleScientistSurfaceTestingTherapeuticThinnessTissuesTranscriptional ActivationTransplantationUncertaintyUnited StatesUniversitiesVisionWashingtonWorkcareercareer developmentcell typecostcytokinefallsgenome-wideimmunoregulationimprovedin vivoinnovationinsulin sensitivitylipid metabolismmacrophagemedical schoolsmitochondrial dysfunctionnovelnovel therapeutic interventionobesity developmentpreventprofessorprogramsresponseskillstenure tracktranscriptome sequencinguptake
项目摘要
PROJECT SUMMARY
Obesity is an increasingly prevalent metabolic disease that affects 38% of adults and 16% of children and costs
the United States healthcare system nearly $200 billion annually. Consequently, there is an urgent need to better
understand the factors that regulate the development of obesity. Emerging studies indicate that white adipose
tissue (WAT)-resident immune cell populations critically regulate the development of obesity by producing
cytokines that modulate glucose utilization, lipid storage, and energy expenditure. However, despite our
growing understanding of the influence of immune cells on obesity, how metabolic cells such as
adipocytes control immune cell responses remains poorly defined. In preliminary studies, I have identified
that adipocytes transfer their mitochondria to a subset of macrophages in WAT in vivo, potentially defining a new
macrophage population. Strikingly, this process is impaired in high fat diet (HFD)-induced obesity. Further,
mitochondria transplantation to mice results in tissue-specific accumulation of macrophages in WAT and release
of free fatty acids into circulation. These observations suggest that intercellular mitochondria transfer is a
dynamically regulated physiologic process that has important functional effects on lipid metabolism. To dissect
the mechanisms of intercellular mitochondria transfer, I performed a genome-wide CRISPR-knockout screen.
The top-scoring gene, Exostosis 1 (Ext1), is required for heparan sulfate synthesis and is essential for normal
lipid metabolism in mice and humans. Critically, my data indicate that Ext1 is necessary for mitochondria transfer
in vitro without affecting uptake of other foreign bodies. Collectively, these data provoke the central hypothesis
that intercellular transfer of mitochondria from adipocytes to macrophages is a previously unrecognized
mechanism that controls macrophage function and systemic metabolic homeostasis. This hypothesis forms the
basis of my two aims. In Aim 1, I will determine the identity and function of macrophages that have acquired
mitochondria from adipocytes and investigate the immunologic and metabolic potential of these cells. In Aim 2,
I will investigate whether EXT1 is required for intercellular mitochondrial transfer and regulation of metabolic
homeostasis in vivo. These will be addressed employing the intellectual and scientific resources available in the
Brestoff lab, novel strains of mitochondria reporter mice, new genetic models of disrupted mitochondria transfer,
and a suite of metabolism and immunology core facilities at Washington University School of Medicine.
Importantly, these findings may impact how we approach the treatment of metabolic disorders beyond existing
therapeutic paradigms.
项目概要
肥胖是一种日益普遍的代谢性疾病,影响 38% 的成人和 16% 的儿童,并造成高昂的费用
美国医疗保健系统每年花费近2000亿美元。因此,迫切需要更好地
了解调节肥胖发展的因素。新兴研究表明,白色脂肪
组织(WAT)驻留免疫细胞群通过产生
调节葡萄糖利用、脂质储存和能量消耗的细胞因子。然而,尽管我们
人们越来越了解免疫细胞对肥胖的影响,以及代谢细胞(例如
脂肪细胞控制免疫细胞反应的定义仍然不明确。在初步研究中,我已经确定
脂肪细胞将其线粒体转移到体内 WAT 中的巨噬细胞子集,这可能定义了一种新的
巨噬细胞群。引人注目的是,这一过程在高脂肪饮食(HFD)引起的肥胖中受到损害。更远,
小鼠线粒体移植导致 WAT 中巨噬细胞的组织特异性积累和释放
游离脂肪酸进入循环。这些观察结果表明细胞间线粒体转移是一种
动态调节的生理过程,对脂质代谢具有重要的功能影响。剖析
为了了解细胞间线粒体转移的机制,我进行了全基因组 CRISPR 敲除筛选。
得分最高的基因 Exostosis 1 (Ext1) 是硫酸乙酰肝素合成所必需的,并且对于正常细胞至关重要。
小鼠和人类的脂质代谢。重要的是,我的数据表明 Ext1 对于线粒体转移是必需的
在体外不影响其他异物的摄取。总的来说,这些数据引发了中心假设
线粒体从脂肪细胞到巨噬细胞的细胞间转移是以前未被认识到的
控制巨噬细胞功能和全身代谢稳态的机制。这个假设形成了
我的两个目标的基础。在目标 1 中,我将确定已获得的巨噬细胞的身份和功能
来自脂肪细胞的线粒体,并研究这些细胞的免疫和代谢潜力。在目标 2 中,
我将研究 EXT1 是否是细胞间线粒体转移和代谢调节所必需的
体内稳态。这些问题将利用现有的知识和科学资源来解决。
布雷斯托夫实验室,线粒体报告小鼠的新品种,线粒体转移中断的新遗传模型,
以及华盛顿大学医学院的一套代谢和免疫学核心设施。
重要的是,这些发现可能会影响我们在现有的基础上治疗代谢紊乱的方法
治疗范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan R Brestoff其他文献
Jonathan R Brestoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan R Brestoff', 18)}}的其他基金
Regulation of innate immune cell responses through cell-to-cell transfer of mitochondria
通过线粒体细胞间转移调节先天免疫细胞反应
- 批准号:
10247512 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Regulation of innate immune cell responses through cell-to-cell transfer of mitochondria
通过线粒体细胞间转移调节先天免疫细胞反应
- 批准号:
9792785 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Regulation of innate immune cell responses through cell-to-cell transfer of mitochondria
通过线粒体细胞间转移调节先天免疫细胞反应
- 批准号:
10693961 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Innate lymphoid cell regulation of metabolic homeostasis
先天淋巴细胞对代谢稳态的调节
- 批准号:
8873966 - 财政年份:2014
- 资助金额:
$ 39.38万 - 项目类别:
Innate lymphoid cell regulation of metabolic homeostasis
先天淋巴细胞对代谢稳态的调节
- 批准号:
8709176 - 财政年份:2014
- 资助金额:
$ 39.38万 - 项目类别:
相似国自然基金
巨噬细胞GP73-CXCL5调节脂肪组织适应性产热的机制研究
- 批准号:32300573
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同脂肪组织及其驻留巨噬细胞调控小鼠禁食稳态的系统研究
- 批准号:32301235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
- 批准号:82372581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
MYO9B缺失调控脂肪组织巨噬细胞代谢重编程促进肥胖相关胰岛素抵抗的机制研究
- 批准号:82300948
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Them1 Inhibitors for the Management of Non-Alcoholic Fatty Liver Disease
Them1 治疗非酒精性脂肪肝的抑制剂
- 批准号:
10666090 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
PDGFRB Signaling in Progressive Skin Disease
进行性皮肤病中的 PDGFRB 信号传导
- 批准号:
10583948 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Mechanical properties of adipose tissue and its effect on breast cancer
脂肪组织的力学特性及其对乳腺癌的影响
- 批准号:
10737165 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703523 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别: