Novel Mechanism of Uranium Reduction Via Microbial Nanowires

通过微生物纳米线还原铀的新机制

基本信息

  • 批准号:
    7995994
  • 负责人:
  • 金额:
    $ 29.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-02-01 至 2012-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by the applicant): One promising strategy for the in situ bioremediation of radioactive contaminants is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. While Geobacter bacteria are recognized as important agents for the reductive precipitation of soluble U(VI) to insoluble U(IV) in situ, the underlying mechanism is poorly understood. The reduction of U(VI) and other soluble contaminants by these microorganisms is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor. The recent discovery that Geobacter bacteria employ a novel mechanism for electron transport to Fe(III) oxides via protein nanowires (conductive pili) prompted us to investigate a potential role for these extracellular appendages in U(VI) reduction. Expression of pilus nanowires in the model organism Geobacter sulfurreducens led to a rapid precipitation of U(VI) to a U(IV) mineral along the nanowire length, demonstrating a previously unrecognized role for Geobacter nanowires in electron transfer to U(VI). Our objective in this proposal is to characterize the mechanism of U(VI) reduction mediated by Geobacter's pilus nanowires at the molecular and nano-scale level. As a complex biological and electronic structure of nanoscale dimensions (3-5 nm in diameter), insights into the structure and electronics of Geobacter's nanowires and their contribution to uranium reduction will require innovative approaches that integrate biological, physical and nanotechnological tools. To accomplish this, we bring together a team of researchers with recognized leadership in microbial metal reduction and nanowires, biosensor design, and environmental spectroscopy. Specifically, we propose the following aims: Specific Aim #1: Identify the molecular basis of nanowire-mediated electron transfer. Our working hypothesis, based on strong preliminary data presented in the application, is that the key nanowire components involved in U(VI) reduction can be identified by screening mutants with defects in nanowire functions and studying their effect in U(VI) transformations. Specific Aim #2: Develop nanostructured bioelectronic interfaces that integrate electroactive nanowires and lipid membranes with electrodes. Our working hypothesis, also based upon preliminary data, is that nanowire electrochemical processes can be mimicked and studied using nanostructured bioelectronic interfaces that integrate functional components of the nanowire system with electrodes. These studies are innovative in that they integrate microbiological, physical and nanotechnological tools to elucidate the novel mechanism of uranium reduction by microbial nanowires. At the completion of these studies we will have elucidated the basis of nanowire electron transfer to uranium at the molecular and nanoscale level, to enhance our knowledge of the key biological processes involved in the bioremediation of radionuclides and other soluble toxic metals and provide a basis for improved bioremediation processes.
描述(申请人提供): 放射性污染物的原位生物修复的一种有希望的策略是刺激异化金属还原微生物的活性,以还原沉淀铀和其他可溶性有毒金属。虽然地球细菌被认为是可溶性U(VI)还原为不溶性U(IV)的重要药物,但对基本机制的理解很少。这些微生物对U(VI)和其他可溶性污染物的还原直接取决于其自然电子受体的Fe(III)氧化物的还原。最近的发现,地球细菌采用了一种新型的通过蛋白纳米线(导电pili)向Fe(III)氧化物传输到Fe(III)的机制,这促使我们研究了这些细胞外附属物在U(VI)还原中的潜在作用。模型生物体地球杆菌中菌毛纳米线的表达导致U沿纳米线的u(vi)迅速沉淀到u(iv)矿物质,这表明在电子转移到u(VI)中,纳米杆菌在geobacter nanowires中的作用(VI)。我们在该提案中的目标是表征由分子和纳米级水平的Geobacter的Pilus纳米线介导的U(VI)还原的机制。作为纳米级维度的复杂生物学和电子结构(直径为3-5 nm),对地理杆菌纳米线的结构和电子的见解及其对铀还原的贡献将需要整合生物学,物理,物理和纳米技术工具的创新方法。为此,我们将一组研究人员组成,在微生物金属减少和纳米线,生物传感器设计和环境光谱方面具有公认的领导能力。具体而言,我们提出以下目的:特定目标#1:确定纳米介介导的电子传递的分子基础。我们的工作假设基于应用程序中提出的强有初步数据,是可以通过筛选纳米线函数中具有缺陷的突变体并研究其在U(VI)转换中的作用来鉴定出参与U(VI)降低的关键纳米线组件。特定目的#2:开发纳米结构的生物电子界面,将电活性纳米线和脂质膜与电极整合。我们的工作假设也基于初步数据,是可以使用纳米结构化的生物电子界面对纳米线电化学过程进行模仿和研究,从而将纳米线系统的功能成分与电极整合在一起。这些研究具有创新性,因为它们整合了微生物,物理和纳米技术工具,以阐明微生物纳米线减少铀的新机制。这些研究完成时,我们将阐明在分子和纳米级水平上向铀转移到铀的基础,以增强我们对辐射核酸盐和其他可溶性金属生物修复涉及的关键生物学过程的了解,并为改进的生物化过程提供基础。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy.
Electron transfer at the cell-uranium interface in Geobacter spp.
When microbial conversations get physical.
  • DOI:
    10.1016/j.tim.2010.12.007
  • 发表时间:
    2011-03
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Reguera G
  • 通讯作者:
    Reguera G
Genetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer.
  • DOI:
    10.3389/fmicb.2016.01578
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Speers AM;Schindler BD;Hwang J;Genc A;Reguera G
  • 通讯作者:
    Reguera G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gemma Reguera其他文献

Gemma Reguera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gemma Reguera', 18)}}的其他基金

Novel Mechanism of Uranium Reduction Via Microbial Nanowires
通过微生物纳米线还原铀的新机制
  • 批准号:
    7571443
  • 财政年份:
    2009
  • 资助金额:
    $ 29.69万
  • 项目类别:

相似国自然基金

基于口腔灌注种植体周围炎动物模型探索多细菌感染后的宿主免疫反应机制
  • 批准号:
    82201049
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于口腔灌注种植体周围炎动物模型探索多细菌感染后的宿主免疫反应机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
减毒肺炎链球菌呼吸道定植诱导的重度慢阻肺动物模型建立及其机制研究
  • 批准号:
    81670037
  • 批准年份:
    2016
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
腰椎终板Modic改变动物模型的建立及其评估
  • 批准号:
    81672208
  • 批准年份:
    2016
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
粘膜免疫功能障碍性肠道细菌移位小鼠疾病模型的构建
  • 批准号:
    81471623
  • 批准年份:
    2014
  • 资助金额:
    140.0 万元
  • 项目类别:
    面上项目

相似海外基金

Capsule-intravaginal ring for sustained release of antibodies for non-hormonal contraception and vaginal protection against HIV
胶囊阴道环,用于持续释放抗体,用于非激素避孕和阴道艾滋病毒保护
  • 批准号:
    9799170
  • 财政年份:
    2021
  • 资助金额:
    $ 29.69万
  • 项目类别:
Capsule-intravaginal ring for sustained release of antibodies for non-hormonal contraception and vaginal protection against HIV
胶囊阴道环,用于持续释放抗体,用于非激素避孕和阴道艾滋病毒保护
  • 批准号:
    10381449
  • 财政年份:
    2021
  • 资助金额:
    $ 29.69万
  • 项目类别:
Novel Mechanism of Uranium Reduction Via Microbial Nanowires
通过微生物纳米线还原铀的新机制
  • 批准号:
    7571443
  • 财政年份:
    2009
  • 资助金额:
    $ 29.69万
  • 项目类别:
An Attenuated E.coli Vaccine for Enterotoxigenic E.coli (ETEC)
针对产肠毒素大肠杆菌 (ETEC) 的减毒大肠杆菌疫苗
  • 批准号:
    7669911
  • 财政年份:
    2009
  • 资助金额:
    $ 29.69万
  • 项目类别:
An Attenuated E.coli Vaccine for Enterotoxigenic E.coli (ETEC)
针对产肠毒素大肠杆菌 (ETEC) 的减毒大肠杆菌疫苗
  • 批准号:
    7843474
  • 财政年份:
    2009
  • 资助金额:
    $ 29.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了