Eavesdropping on heart-brain conversations during sleep for early detection and prevention of fatal cardiovascular disease
在睡眠期间窃听心脑对话,以及早发现和预防致命的心血管疾病
基本信息
- 批准号:10002962
- 负责人:
- 金额:$ 18.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-19 至 2022-07-27
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsApneaArousalArtificial IntelligenceAwardBrainCardiac Electrophysiologic TechniquesCardiovascular DiseasesCardiovascular PathologyCardiovascular systemCause of DeathCessation of lifeClinicalClinical ResearchClinics and HospitalsConsciousCritical CareDataDefibrillatorsDiseaseEarly DiagnosisEarly treatmentElectrocardiogramElectroencephalogramEngineeringHealthHeartHeart ArrestHeart DiseasesHeart failureHourHumanIncidenceIndividualIndustrializationInterdisciplinary StudyLifeLinkMathematicsMedicineMethodsMolecularMonitorMultivariate AnalysisPatientsPersonal SatisfactionPreventionResearchRiskRisk FactorsRisk stratificationSignal TransductionSleepSleep Apnea SyndromesTechnologyTimeUnited States National Institutes of HealthUnnecessary Proceduresbody systemcardiovascular risk factorclinical practicedynamic systemearly onsethigh riskimprovedinnovationinsightnovelnovel strategiespersonalized strategiespreventprognosticsocioeconomicsstatisticssuccesstool
项目摘要
ABSTRACT
The intimate link between the heart, brain and sleep is central to our well-being and ability to meet the demands
of life. A majority of cardiovascular (CV) deaths occur in the early waking hours from sleep. For example, sudden
cardiac arrest (SCA), an extremely prevalent and devastating condition, claims more lives (>350,000/year) in the
USA than all disease-related causes of death combined. A defibrillator can prevent SCA, but current clinical strategies
are grossly inadequate, both in terms of identifying people at risk and importantly, monitoring and controlling the CV
risk. To address this major gap, we are proposing an entirely novel approach for studying heart-brain interactions
during sleep. To our knowledge, our compelling new preliminary data and innovative strategy are unprecedented.
In robust preliminary studies of animals and humans, we have identified unique signatures of evolving, potentially
fatal, CV disease within electrocardiogram (ECG) and electroencephalogram (EEG) waveforms that otherwise cannot
be detected by current clinical methods and conventional statistics. Our powerful new tools reveal these “hidden”
signatures during sleep (i.e., as conscious activity decreases and autonomic control of the heart becomes prominent).
This missing link we have identified between the heart, brain, spontaneous intrinsic arousals, and critical CV disease
is independent (in multivariate analyses) of sleep disordered breathing (e.g., apnea) and established risk factors. Our
novel and highly promising findings may account for the high incidence of CV deaths associated with sleep and have
potential for broad application, ranging from animal models to improved reclassification of individuals currently consid-
ered “low”, “moderate” or “high” risk in contemporary clinical practice. This is important because asymptomatic individ-
uals without advanced CV disease comprise the majority of SCA victims. They also are the ones “missed” by current
risk stratification methods and the most challenging to identify. Further, our fundamental new approach to EEG and
ECG analysis will add new, clinically valuable, prognostic insight for patients with advanced CV disease (e.g., heart
failure). This robust, inexpensive, personalized strategy for identifying who will and will not need lifesaving therapy
will also avoid unnecessary procedures and complications, and thus, will provide substantial socioeconomic benefits.
This paradigm-shifting application for a NIH Director’s New Innovator Award incorporates clinical cardiac electro-
physiology, critical care and sleep medicine with engineering, mathematics, artificial intelligence, statistical dynamical
systems, and molecular, cellular and clinical research to enable early diagnosis and therapy of critical CV disease.
Our unique approach for gaining novel mechanistic insight into CV pathology and risk during sleep is likely to spawn
new avenues in collaborative multidisciplinary research. Because our new paradigm can be seamlessly incorporated
into existing technology readily available in hospitals and clinics, we expect our findings to rapidly transform contem-
porary clinical practice in multiple fields. Importantly, the ability to identify and decode “hidden” EEG and ECG signa-
tures of early onset of fatal, subclinical CV illness, including SCA, the leading cause of death in the industrialized
world, has extraordinary implications for human health and the potential for broad worldwide application.
抽象的
心脏、大脑和睡眠之间的密切联系对于我们的健康和满足需求的能力至关重要
大多数心血管 (CV) 死亡发生在睡眠初期。
心脏骤停 (SCA) 是一种极其普遍且具有破坏性的疾病,在世界各地夺走了更多人的生命(>350,000 人/年)
美国除颤器可以预防 SCA,但目前的临床策略是所有疾病相关死亡原因的总和。
无论是在识别高危人群方面还是在监控和控制简历方面都严重不足
为了解决这一重大差距,我们提出了一种全新的方法来研究心脑相互作用。
据我们所知,我们令人信服的新初步数据和创新策略是前所未有的。
在对动物和人类进行的强有力的初步研究中,我们已经确定了进化的独特特征,潜在的
心电图 (ECG) 和脑电图 (EEG) 波形中的致命性心血管疾病,否则无法
通过当前的临床方法和传统统计数据可以检测到,我们强大的新工具揭示了这些“隐藏的”。
睡眠期间的特征(即,随着意识活动减少并且心脏的自主控制变得突出)。
我们已经在心脏、大脑、自发性内在唤醒和严重心血管疾病之间发现了这一缺失的环节
与睡眠呼吸障碍(例如呼吸暂停)和已确定的危险因素无关(在多变量分析中)。
新颖且非常有希望的发现可能解释了与睡眠相关的心血管死亡的高发生率,并已
广泛应用的潜力,从动物模型到目前考虑的个体的改进重新分类
在当代临床实践中,将无症状个体分为“低”、“中”或“高”风险,这一点很重要。
没有晚期心血管疾病的人占 SCA 受害者的大多数,他们也是当前“错过”的人。
风险分层方法和最具挑战性的识别此外,我们的脑电图和基本新方法。
心电图分析将为患有晚期心血管疾病(例如心脏病)的患者增加新的、有临床价值的预后见解。
这种稳健、廉价、个性化的策略可用于确定谁需要或不需要挽救生命的治疗。
还将避免不必要的手术和并发症,从而带来巨大的社会经济效益。
NIH 主任新创新者奖的这一范式转变应用结合了临床心脏电
生理学、重症监护和睡眠医学与工程学、数学、人工智能、统计动力学
系统以及分子、细胞和临床研究,以实现危重心血管疾病的早期诊断和治疗。
我们可能会产生对心血管病理学和睡眠期间风险进行新颖机制洞察的独特方法
因为我们的新范式可以无缝整合。
融入医院和诊所现有的技术中,我们希望我们的发现能够迅速改变人们的观念
重要的是,识别和解码“隐藏”脑电图和心电图信号的能力。
致命的亚临床心血管疾病的早期发作,包括 SCA,它是工业化国家的首要死因
世界,对人类健康具有非凡的影响,并具有在全球范围内广泛应用的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deeptankar DeMazumder其他文献
Deeptankar DeMazumder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deeptankar DeMazumder', 18)}}的其他基金
Eavesdropping on heart-brain conversations during sleep for early detection and prevention of fatal cardiovascular disease
在睡眠期间窃听心脑对话,以及早发现和预防致命的心血管疾病
- 批准号:
10728837 - 财政年份:2020
- 资助金额:
$ 18.58万 - 项目类别:
Autonomic remodeling and modulation therapy in heart failure and sudden death
心力衰竭和猝死的自主神经重塑和调节治疗
- 批准号:
9405941 - 财政年份:2017
- 资助金额:
$ 18.58万 - 项目类别:
Autonomic remodeling and modulation therapy in heart failure and sudden death
心力衰竭和猝死的自主神经重塑和调节治疗
- 批准号:
9014077 - 财政年份:2016
- 资助金额:
$ 18.58万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 18.58万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 18.58万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 18.58万 - 项目类别:
Postnatal and Prenatal Therapeutic Base Editing for Metabolic Diseases
代谢性疾病的产后和产前治疗碱基编辑
- 批准号:
10668614 - 财政年份:2023
- 资助金额:
$ 18.58万 - 项目类别: