Ultrafast Spectroscopic Methods to Probe Photodamage and Unfolding in Biopolymers
超快光谱方法探测生物聚合物中的光损伤和展开
基本信息
- 批准号:8112687
- 负责人:
- 金额:$ 18.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsAreaAromatic Amino AcidsBiochemical ProcessBiologyBiopolymersCharacteristicsCollaborationsComplementDNADNA lesionDataDependenceDevelopmentDimerizationDissociationElectronicsEnvironmentEventEvolutionExhibitsFluorescenceFosteringFundingGoalsHealthHeatingHumanHuman BiologyInvestigationKineticsLinkMechanicsMethodologyMethodsMissionModelingMolecular StructureMonitorMotionNatureNucleic AcidsOligonucleotidesOpticsOutcomePeptidesPhotobiologyPhotochemistryPolymersPositioning AttributeProcessProductionProteinsPublic HealthPyrimidinesRaman Spectrum AnalysisResearchResearch DesignResearch MethodologyResearch PersonnelResolutionSideSpecificitySpectrum AnalysisStructureStructure-Activity RelationshipSystemTechniquesTechnologyTestingTheoretical modelTimeUV inducedUltraviolet RaysUnited States National Institutes of HealthUniversitiesWorkabsorptionaqueousbiological systemsenvironmental mutagensinnovationinstrumentinstrumentationinterestmeltingmolecular dynamicsnanosecondnovel therapeuticsprotein functionpublic health relevancequantumquantum chemistrytoolultraviolet
项目摘要
DESCRIPTION (provided by applicant): New spectroscopic methods are needed to determine the structural changes that occur in biological systems on the femtosecond (10-15 s) to nanosecond (10-9 s) time-scale. Photodamage to nucleic acids by ultraviolet (UV) light occurs in 100's of femtoseconds and numerous functions of peptides, proteins and oligonucleotides depend on structural fluctuations occurring over picoseconds to nanoseconds and longer. In each of these cases, there are few experimental techniques that can resolve the dynamic molecular structure of the evolving system. Our work aims to correct this by developing ultrafast Raman spectroscopy capable of collecting vibrational spectra, which can be directly related to molecular structure, of photochemically and thermally activated dynamics in biomolecules. Specific Aim #1 of this proposal will develop new femtosecond Raman instrumentation that can collect high-resolution vibrational spectra with time resolution better than 100 fs. This methodology will be applied to gain new understanding of the ultrafast dimerization of pyrimidines in DNA following excitation by UV light, as well as new fundamental understanding of the quantum mechanical nature of the excitation in nucleic acid polymers. With Specific Aim #2, we will develop new methodologies to impulsively initiate thermal unfolding of biopolymers. This will allow the numerous tools of time-resolved spectroscopy, which currently have applications limited to photochemistry, to unravel the dynamics of thermally driven secondary structural changes on the picosecond to nanosecond time-scale. Raman spectroscopy is uniquely positioned to contribute to these areas because of its ability to collect vibrational spectra of biopolymers over a wide spectral window without interference from the aqueous environment. Raman spectra of biopolymers exhibit particular peaks that are characteristic of the secondary structure of the polymer and the particular environment of the side chains or nucleic acids. Hence by collecting time-resolved Raman spectra as biochemical processes proceed, we can determine both the time-scales of formation and the structures of kinetic intermediates. This experimental work will complement the many theoretical predictions that have been made about ultrafast structural changes in photoexcited DNA and longer time-scale structural fluctuations. The proposed research is significant because of the breadth of photobiology that can be addressed by these techniques and the need for experimental probes of rapid structural changes important to biology and human health.
PUBLIC HEALTH RELEVANCE (provided by applicant): The proposed research directly supports the mission of the NIH by helping to establish new understanding of the mechanisms of ultraviolet light damage to DNA, and its implication for public health. Ultraviolet light is one of the most prevalent environmental mutagens on earth, with significant deleterious effects on human health. These studies will also increase the capability of biomedical researchers to investigate the rapid structural motions important to the functions of proteins and DNA, thereby accelerating the development of new therapeutics.
描述(由申请人提供):需要新的光谱方法来确定飞秒(10-15 s)对纳米秒(10-9 s)时间尺度的生物系统中发生的结构变化。通过紫外线(UV)光对核酸进行光损伤发生在100秒的飞秒中,肽,蛋白质和寡核苷酸的众多功能取决于在Picseconds上发生的结构波动,从而在nanoseconds上发生,并且更长。在每种情况下,很少有实验技术可以解决不断发展的系统的动态分子结构。我们的工作旨在通过开发能够收集振动光谱的超快拉曼光谱法来纠正这一点,这可以与生物分子中的光化学和热活化动力学直接相关。该提案的特定目的#1将开发新的飞秒拉曼仪器,该仪器可以以比100 fs更好的时间分辨率收集高分辨率振动光谱。该方法将应用于在紫外线激发后对DNA中嘧啶的超快二聚化的新理解,以及对核酸聚合物激发的量子机械性质的新基本理解。使用特定的目标#2,我们将开发新的方法,以冲动启动生物聚合物的热展开。这将允许众多的时间分辨光谱的工具(目前仅用于光化学的应用)来揭示Picsecond到纳秒时间尺度上热驱动的二次结构变化的动力学。拉曼光谱法具有独特的位置,可以为这些区域做出贡献,因为它的能力可以在宽光谱窗口上收集生物聚合物的振动光谱,而不会受到水性环境的干扰。生物聚合物的拉曼光谱表现出特定的峰,这些峰是聚合物的二级结构以及侧链或核酸的特定环境的特征。因此,通过随着生化过程的进行收集时间分辨的拉曼光谱,我们可以确定形成的时间尺度和动态中间体的结构。这项实验工作将补充有关光激发DNA和更长的时间尺度结构波动的超快结构变化的许多理论预测。拟议的研究非常重要,因为这些技术可以解决光生物学的广度,并且需要对生物学和人类健康很重要的快速结构变化的实验探针。
公共卫生相关性(由申请人提供):拟议的研究直接支持NIH的使命,这有助于建立对紫外线对DNA的光损害机制的新理解及其对公共卫生的影响。紫外线是地球上最普遍的环境诱变者之一,对人类健康有重大有害影响。这些研究还将提高生物医学研究人员研究对蛋白质和DNA功能重要的快速结构运动的能力,从而加快新疗法的发展。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disagreement Between the Structure of the dTpT Thymine Pair Determined by NMR and Molecular Dynamics Simulations Using Amber 14 Force Fields.
- DOI:10.1021/acs.jpcb.6b00191
- 发表时间:2016-02
- 期刊:
- 影响因子:0
- 作者:C. Nganou;S. Kennedy;D. McCamant
- 通讯作者:C. Nganou;S. Kennedy;D. McCamant
Re-evaluation of rhodopsin's relaxation kinetics determined from femtosecond stimulated Raman lineshapes.
- DOI:10.1021/jp2028164
- 发表时间:2011-07-28
- 期刊:
- 影响因子:3.3
- 作者:McCamant, David W.
- 通讯作者:McCamant, David W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David W McCamant其他文献
David W McCamant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David W McCamant', 18)}}的其他基金
Ultrafast Spectroscopic Methods to Probe Photodamage and Unfolding in Biopolymers
超快光谱方法探测生物聚合物中的光损伤和展开
- 批准号:
8264193 - 财政年份:2010
- 资助金额:
$ 18.45万 - 项目类别:
Ultrafast Spectroscopic Methods to Probe Photodamage and Unfolding in Biopolymers
超快光谱方法探测生物聚合物中的光损伤和展开
- 批准号:
7761111 - 财政年份:2010
- 资助金额:
$ 18.45万 - 项目类别:
相似国自然基金
胃肠道微生物宏基因组的氨基酸消旋酶挖掘及分析
- 批准号:32360034
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
甘油制α-氨基酸钌基双金属催化剂的构筑及产物调控策略
- 批准号:22308255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
射频协同纳他霉素干扰氨基酸转运高效杀灭黑曲霉的分子机制研究
- 批准号:32302279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
αKG-NHFe酶FtmOx1通过氨基酸多重构象变化催化内过氧化反应的机理研究
- 批准号:22307037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
18F-TZA分子探针靶向识别胶质瘤IDH1突变及其与氨基酸转运体的关联研究
- 批准号:82302337
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
- 批准号:
10644211 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Exploiting Metabolism to Uncloak Epstein-Barr Virus Immunogens in Latently Infected B-cells
利用代谢揭示潜伏感染 B 细胞中的 Epstein-Barr 病毒免疫原
- 批准号:
10889325 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别: