Virtual reality driving and brain injury in the clinic
诊所中的虚拟现实驾驶和脑损伤
基本信息
- 批准号:10017286
- 负责人:
- 金额:$ 39.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccidentsAddressAlgorithmsAssessment toolAutomobile DrivingBehaviorBrain InjuriesClinicClinicalClinical ProtocolsClinical assessmentsCommunitiesComplexConsensusDataData ReportingDatabasesFollow-Up StudiesGeneral PopulationGenerationsGoldHumanIndividualInterventionLaboratoriesLifeLiteratureMeasuresMethodologyMethodsModelingModificationMonitorMoodsMotor VehiclesOnline SystemsOutcomeOutcome MeasureOutputParticipantPatient Self-ReportPatternPerformancePersonsPopulationPredictive ValueProcessProcess AssessmentQuality of lifeRecordsReportingRiskRisk BehaviorsSafetySamplingStandardizationStatistical Data InterpretationSystemTechniquesTechnologyThinnessWorkdriving behaviordriving skillsevidence baseexperiencefollow-upinnovationnovelpredictive modelingprogramssimulationvirtual reality
项目摘要
Despite the long-standing literature that has demonstrated changes in driving capacity following brain injury (BI) – little is known about the relationship of these differences and increased risk for driver error or the prediction of long term driving outcome after BI. However, it is well-established that the loss of the driving privilege negatively impacts functional re-integration, mood and quality of life – resulting from the reduced ability to participate in various life activities, work and educational experiences.
The challenge to increasing our understanding of how to best assess and predict driving performance after BI is two-fold. First, there is a need for novel assessment methodologies that can provide objective, detailed and repeatable metrics of driving performance. The current clinical gold standard – the behind the wheel (BTW) driving assessment, is over-dependent on subjective observations, lacks standardization, assesses only basic driving skills (due to safety limitation) and generates gross measures of performance (i.e., Pass/Fail). Second, there is a lack of follow-up studies that examine actual return to driving behaviors among individuals with BI. While some evidence for greater risk of crash involvement (often dichotomized as Yes/No) has been reported, these studies have relied heavily on self-reported data and offer little to no data about driver behaviors and/or modifications, risk-involvement, crash causing-behaviors or driving patterns.
The proposed study aims to address these limitations and employs an established virtual reality driving simulator (VRDS) that outputs novel driving performance metrics that are currently not available thru clinical methodology. The VRDS generates detailed metrics that can differentiate between clinical populations. Specifically, the study will integrate VRDS into an existing clinical driving assessment program and evaluate 100 individuals with BI across the process of returning to drive (e.g., from assessment to follow- up) and a sample of healthy controls. All participants will be assessed with both current clinical protocols and VRDS. This will be followed by a 24 month follow-up study including an innovative, 3-platform approach (in- car video-monitoring, web-based self-report and driving records) to quantifying returned to driving behaviors. The data collected will be used to apply both traditional (Regression Models) and novel (Machine-Leaning Models) analytical techniques to generate predictive models of relevant outcome variables (i.e., risk involvement, crash-relevant errors) that can be used to inform tailored driver interventions and retraining.
尽管长期文献表明脑损伤 (BI) 后驾驶能力会发生变化,但人们对这些差异与驾驶员失误风险增加之间的关系或 BI 后长期驾驶结果的预测知之甚少。 - 确定失去驾驶权会对功能重新整合、情绪和生活质量产生负面影响——这是由于参与各种生活活动、工作和教育经历的能力下降造成的。
增强我们对如何最好地评估和预测 BI 后的驾驶表现的理解面临着双重挑战,首先,需要能够提供客观、详细和可重复的驾驶表现指标的新评估方法。 – 驾驶(BTW)驾驶评估过度依赖主观观察,缺乏标准化,仅评估基本驾驶技能(由于安全限制)并生成粗略的表现衡量标准(即通过/失败)。是缺乏后续研究调查了 BI 患者实际恢复驾驶行为的情况,虽然有一些证据表明发生车祸的风险更大(通常分为“是”/“否”),但这些研究很大程度上依赖于自我报告的数据,并且提供的信息很少。没有关于驾驶员行为和/或修改、风险参与、导致碰撞的行为或驾驶模式的数据。
拟议的研究旨在解决这些问题,并采用现有的虚拟现实驾驶模拟器(VRDS),该模拟器可以输出目前无法通过临床方法获得的新颖驾驶性能指标。将 VRDS 整合到现有的临床驾驶评估计划中,并在恢复驾驶的过程中(例如,从评估到随访)对 100 名个体进行 BI 评估,并抽取健康对照样本。 VRDS 随后将进行为期 24 个月的跟踪研究,包括采用创新的 3 平台方法(车内视频监控、基于网络的自我报告和驾驶记录)来量化返回的驾驶行为数据。将用于应用传统(回归模型)和新颖(机器学习模型)分析技术来生成相关结果变量(即风险参与、碰撞相关错误)的预测模型,这些模型可用于为量身定制的驾驶员干预措施提供信息和再培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARIA Teresa SCHULTHEIS其他文献
MARIA Teresa SCHULTHEIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARIA Teresa SCHULTHEIS', 18)}}的其他基金
Catalyzing Systemic Change at Drexel University to Support Diverse Faculty in Health Disparities Research
促进德雷塞尔大学的系统性变革,支持多元化教师进行健康差异研究
- 批准号:
10491884 - 财政年份:2021
- 资助金额:
$ 39.43万 - 项目类别:
Catalyzing Systemic Change at Drexel University to Support Diverse Faculty in Health Disparities Research
促进德雷塞尔大学的系统性变革,支持多元化教师进行健康差异研究
- 批准号:
10361800 - 财政年份:2021
- 资助金额:
$ 39.43万 - 项目类别:
Virtual reality driving and brain injury in the clinic
诊所中的虚拟现实驾驶和脑损伤
- 批准号:
10417153 - 财政年份:2019
- 资助金额:
$ 39.43万 - 项目类别:
Virtual reality driving and brain injury in the clinic
诊所中的虚拟现实驾驶和脑损伤
- 批准号:
10202681 - 财政年份:2019
- 资助金额:
$ 39.43万 - 项目类别:
Examining the relationship of cognitive impairment and driving following concussi
检查脑震荡后认知障碍与驾驶的关系
- 批准号:
7874120 - 财政年份:2010
- 资助金额:
$ 39.43万 - 项目类别:
VIRTUAL REALITY AND DRIVING ASSESSMENT AFTER TBI
虚拟现实和 TBI 后的驾驶评估
- 批准号:
6397754 - 财政年份:2001
- 资助金额:
$ 39.43万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 39.43万 - 项目类别:
Social Norms & Skills Training: Motivating Campus Change
社会规范
- 批准号:
10672719 - 财政年份:2022
- 资助金额:
$ 39.43万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10580741 - 财政年份:2021
- 资助金额:
$ 39.43万 - 项目类别: