TSHR and thyrocyte development
TSHR 和甲状腺细胞发育
基本信息
- 批准号:7885961
- 负责人:
- 金额:$ 7.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-03-01 至 2011-03-10
- 项目状态:已结题
- 来源:
- 关键词:AdultBiological AssayBiological ProcessCell LineCell LineageCell ProliferationCell TherapyCell modelCellsClinicalCodeCretinismDefectDevelopmentDiseaseES Cell LineES02EctodermEctopic ExpressionEmbryoEmbryonic DevelopmentEndodermEpigenetic ProcessEthicsFibroblastsGene ProteinsGeneticGerm LayersGoalsHematopoieticHumanHyperplasiaHypothyroidismIn VitroInner Cell MassIodidesLeadMediatingMesodermMethodsModelingMolecularMusNOD/SCID mouseNeuronsPathogenesisPatientsProtocols documentationRegistriesResearchRetroviridaeScreening procedureSignal PathwaySkinStagingStem cellsTechniquesTechnologyTeratomaTestingTherapeuticThyroid DiseasesThyroid GlandThyroid HormonesThyrotropin ReceptorTimeToxicologyTransfectionUnited States National Institutes of HealthWorkc-myc Genescell typedisease phenotypedrug candidateembryo tissueembryonic stem cellgastrulationhuman diseasehuman embryonic stem cellhuman embryonic stem cell linein vivoinduced pluripotent stem cellmodel developmentmouse modelmutantnovelnovel therapeutic interventionparent grantprogenitorpublic health relevanceself-renewalstemstem cell differentiationstem cell technologysuccesstooltranscription factor
项目摘要
DESCRIPTION (provided by applicant): Thyroid diseases are commonly caused by abnormal thyroid cell proliferation and differentiation, which can lead to various, possibly fatal complications. The mechanisms by which these diseases develop by are largely unknown and have yet to be discovered. Presently, the long-term goal of our parent grant is to elucidate the molecular mechanisms by which embryonic stem (ES) cells differentiate into definitive thyrocytes. Pluripotent ES cells, derived from the inner cell mass of early embryos, can both self-renew and differentiate into all cell types in the body and as such provide a key thyroid developmental model. The manipulation of the pluripotent potential of murine ES cells in vitro has allowed us to direct differentiation towards the thyroid lineage under the appropriate conditions. To expand upon this mouse model, we are also working to develop a similar model using NIH-registry human ES cells. We have recently developed a form of induced pluripotent stem (iPS) cell technology, which can reprogram adult skin fibroblasts into an ES cell-like state using the retrovirus-mediated transfection of four transcription factors (Oct4, Sox2, c-Myc, and Klf4). Our manipulated iPS cells are similar to ES cells in many respects, including the expression of main stem cell genes and proteins, embryoid body formation, teratomas formation, potency and differentiation. In this application, we will expand on human ES cell studies focused on the mechanisms regulating endoderm induction and its specification to thyroid lineage during ES cell differentiation. Furthermore, we propose to establish and propagate murine iPS cells from a mutant TSHR hypothyroid mouse model. The hypothyroid mice display severe congenital hypothyroidism and thyroid hyperplasia and provide an opportunity to explore the pathophysiological manifestations of this disease. The goal of Specific Aim 1 is to generate thyroid follicular cells from human ES cells. The goal of Specific Aim 2 is to produce and characterize murine iPS cells from normal and mutant TSHR fibroblasts. We will use our established methods to reprogram skin fibroblasts of normal and mutant TSHR mice into iPS cells by the ectopic expression of four transcription factors. We will test the hypothesis that the disease-specific iPS cells can be coaxed into thyroid follicular cells to explore the biological processes that lead to disease phenotypes. Finally, we will characterize the thyrocyte differentiation potential of these murine iPS cell lines in comparison to our well-established murine TSHR-/- ES cell lines by using in vitro and in vivo assays. More specifically, to initiate effort to new therapeutic approaches, we will use these disease-iPS cells as assay tools to validate the defects of iodide transport and thyroid hormone synthesis and secretion. The success of these aims will provide a number of therapeutic promises including: 1) the ability to establish patient-derived iPS cell lines as a research tool to model human disease, and 2) the opportunity to use patient-derived iPS cell lines to perform sophisticated testing of candidate therapeutics and screening assays.
PUBLIC HEALTH RELEVANCE: Thyroid diseases are commonly caused by abnormal thyroid cell proliferation and differentiation, which can lead to various, possibly fatal complications. The mechanisms by which these diseases develop by are largely unknown and have yet to be discovered. The goal of this project is to combine the advantages of embryonic stem cells and induced pluripotent stem cells with the powerful genetic tools available in mouse models to take a unique approach to thyroid development and disease.
描述(由申请人提供):甲状腺疾病通常是由异常的甲状腺细胞增殖和分化引起的,这可能导致各种可能的,可能是致命的并发症。这些疾病发展的机制在很大程度上未知,尚未发现。目前,我们父母赠款的长期目标是阐明胚胎茎(ES)细胞分化为确定的甲状腺细胞的分子机制。源自早期胚胎的内部细胞质量的多能ES细胞可以自我更新和分化为体内所有细胞类型,因此提供了关键的甲状腺发育模型。在适当条件下,在体外对鼠ES细胞的多能潜力的操纵使我们能够将分化向甲状腺谱系。为了扩展这种小鼠模型,我们还努力使用NIH-Registry人ES细胞开发类似的模型。我们最近开发了一种诱导多能茎(IPS)细胞技术的形式,该技术可以使用逆转录病毒介导的四个转录因子(OCT4,SOX2,C-MYC和KLF4)重新编程成人皮肤成纤维细胞将其重新编程为ES细胞状状态。在许多方面,我们操纵的IPS细胞与ES细胞相似,包括主干细胞基因和蛋白质的表达,胚胎体的形成,畸胎瘤形成,效力和分化。在此应用中,我们将扩展有关调节内胚层诱导的机制及其在ES细胞分化过程中甲状腺谱系的规范的机制。此外,我们建议从突变型TSHR甲状腺功能障碍小鼠模型中建立和传播鼠IPS细胞。甲状腺功能低下的小鼠表现出严重的先天性甲状腺功能减退症和甲状腺增生性,并提供了探索该疾病的病理生理表现的机会。特定目标1的目的是从人ES细胞产生甲状腺卵泡细胞。特定目标2的目的是产生和表征来自正常和突变体TSHR成纤维细胞的鼠IPS细胞。我们将使用既定的方法通过四个转录因子的异位表达将正常和突变体TSHR小鼠的皮肤成纤维细胞重新编程为IPS细胞。我们将检验以下假设:疾病特异性的IPS细胞可以哄骗到甲状腺卵泡细胞中,以探索导致疾病表型的生物学过程。最后,我们将通过使用体外和体内分析来表征这些鼠IPS细胞系的甲状腺细胞分化潜力。更具体地说,为了启动新的治疗方法,我们将使用这些疾病-IPS细胞作为测定工具来验证碘化物转运和甲状腺激素的合成和分泌的缺陷。这些目标的成功将提供许多治疗诺言,包括:1)建立患者衍生的IPS细胞系作为建模人类疾病的研究工具的能力,以及2)使用患者衍生的IPS细胞系进行候选治疗学测试和筛查测定的精致测试的机会。
公共卫生相关性:甲状腺疾病通常是由异常的甲状腺细胞增殖和分化引起的,这可能导致各种可能的致命并发症。这些疾病发展的机制在很大程度上未知,尚未发现。该项目的目的是将胚胎干细胞和诱导多能干细胞的优势与小鼠模型中可用的强大遗传工具相结合,以采用独特的甲状腺发育和疾病的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
REIGH-YI LIN其他文献
REIGH-YI LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('REIGH-YI LIN', 18)}}的其他基金
相似国自然基金
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:42207312
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
集成微流控芯片应用于高通量精准生物检体测定
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
硫酸盐还原菌生物膜活性的原位快速测定研究
- 批准号:41876101
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 7.92万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 7.92万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 7.92万 - 项目类别:
EGF Receptor Endocytosis: Mechanisms and Role in Signaling
EGF 受体内吞作用:机制及其在信号传导中的作用
- 批准号:
10552100 - 财政年份:2023
- 资助金额:
$ 7.92万 - 项目类别:
The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
- 批准号:
10538142 - 财政年份:2023
- 资助金额:
$ 7.92万 - 项目类别: