Cell survival in engineered skeletal muscle: The role of complement
工程骨骼肌中的细胞存活:补体的作用
基本信息
- 批准号:10017965
- 负责人:
- 金额:$ 40.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAdoptedAffectAnastomosis - actionAtrophicAutologousBloodBlood VesselsCell DeathCell SurvivalCellsCicatrixClinicClinicalComplementComplement 3aComplement 5aComplement ActivationComplement InactivatorsComplement Membrane Attack ComplexCongenital AbnormalityContractsDefectDeformityEmotionalEngineeringEngraftmentEventExcisionEyeFamilyFibroblastsFoodForeign BodiesGenetically Engineered MouseGoalsHemostatic functionHumanHuman bodyImmuneImmunologicsImplantIndigenousInfiltrationInflammationInflammatoryInflammatory ResponseInjuryInnate Immune ResponseInvestigationLinkMediatingMicrocirculatory BedModalityModelingModernizationMusMuscleMuscular AtrophyNatural ImmunityOperative Surgical ProceduresOpsoninOrganOutcomePathway interactionsPatientsPeptidesPerfusionPharmaceutical PreparationsPlayPositioning AttributeProcessProductionProteinsPublishingResolutionRoleRouteSiteSkeletal MuscleSkinSmilingSurgical FlapsSurvival RateTechniquesTechnologyTestingTherapeuticTissue EngineeringTissue GraftsTissue SurvivalTissuesTranslatingTransplantationTraumaTreatment ProtocolsVascular EndotheliumVascularizationWalkingactivation productangiogenesiscell injuryclinically relevantcomplement pathwaycomplement systemdesignhealingimplantationimprovedinhibitor/antagonistinjury and repairinnate immune mechanismsinnovative technologiesischemic injuryloved onesneovascularnew therapeutic targetnovelnovel strategiesnovel therapeuticspre-clinicalprototyperegenerativerepairedsatellite cellscaffoldstem cellsstressortissue regenerationtooltreatment planningtumorvascular tissue engineering
项目摘要
Abstract
Muscle loss due to trauma, tumor resection or congenital malformation is devastating to the patient and their
family. Current treatment regimens involve creative rearrangement of skin and muscle flaps to mitigate the
deformity. However, these approaches are often sub-optimal as a percentage of mobilized flap tissues contract,
atrophy and/or die and do not function like the original tissues. The field has long envisioned a treatment modality
where using the patient's own cells to create tissue grafts, that can then be transplanted into a patient to restore
form and function. However, unfortunately, there are numerous hurdles yet to be overcome for this new treatment
plan to be broadly adopted in the clinic. One urgent and underappreciated hurdle is the poor survival rate of
implanted cells which we hypothesize are killed by the innate immune response to the implanted graft. A major
effector mechanism of innate immunity is the complement (Cp) system. The extent that early Cp inflammatory
events kill a substantial number of cells within the TECs remains an important unanswered question in the tissue-
engineering field. Even if cell death due to early inflammation can be avoided, there is insufficient vascular
support. Techniques to generate pre-vascularized TECs which have rapid anastomotic potential would
substantially improve cell survival and engraftment. These two highlighted events are intimately linked.
Reduction of early inflammation without early vascular support or early vascular support in the presence of a
substantial inflammatory response will still result in cell death and failed repair. Therefore, our central hypothesis
is that; modulation of Cp effector pathways will promote survival of TEC by reducing inflammation, direct
cell injury, and by promoting neovascularity. In this proposal we articulate a line of investigation that will
lead to an enabling technology to improve the engraftment of cellularized implants by modulating the early
inflammatory process and promoting nascent microvascular beds. Our lab has invented novel strategies and
therapeutics that target the early inflammatory response. Additionally, we have recently developed a novel
scaffold-free technology to generate Self-organizing Pre-vascularized Endothelial-fibroblast Constructs
(SPECs). These engineered constructs can become perfused with blood very quickly once implanted. Using
known mechanisms of inflammation, angiogenesis and anastomosis as our guide, we will systematically test
these innovative technologies using specific inhibitors and genetically engineered mice in a sub-muscular implant
model. The expected outcomes would significantly move the field forward by providing a workable solution
to the principal hurdles facing tissue engineering - rapid vascularization and survival of implanted cells
and tissues.
抽象的
由于外伤、肿瘤切除或先天畸形而导致的肌肉损失对患者及其家人来说是毁灭性的
家庭。目前的治疗方案包括创造性地重新排列皮肤和肌肉瓣,以减轻
畸形。然而,这些方法通常不是最佳的,因为动员的皮瓣组织的百分比会收缩,
萎缩和/或死亡并且不能像原始组织一样发挥作用。该领域很早就设想了一种治疗方式
使用患者自身的细胞创建组织移植物,然后将其移植到患者体内以恢复健康
形式和功能。然而,不幸的是,这种新疗法还有许多障碍有待克服
计划在临床上广泛采用。一个紧迫且未被充分认识的障碍是低生存率
我们假设植入的细胞被对植入移植物的先天免疫反应杀死。一个专业
先天免疫的效应机制是补体(Cp)系统。早期 Cp 炎症的程度
事件杀死了 TEC 内的大量细胞,这仍然是组织中一个未解答的重要问题——
工程领域。即使可以避免早期炎症导致的细胞死亡,但血管供应不足
支持。产生具有快速吻合潜力的预血管化 TEC 的技术将
显着提高细胞存活率和植入率。这两个突出事件密切相关。
在没有早期血管支持或存在早期血管支持的情况下减少早期炎症
大量的炎症反应仍会导致细胞死亡和修复失败。因此,我们的中心假设
是那个; Cp 效应通路的调节将通过减少炎症、直接促进 TEC 的存活
细胞损伤,并促进新血管形成。在本提案中,我们阐明了一系列调查,将
导致一种通过调节早期细胞来改善细胞化植入物的植入的使能技术
炎症过程并促进新生微血管床。我们的实验室发明了新颖的策略
针对早期炎症反应的治疗方法。另外,我们最近还开发了一本小说
无支架技术生成自组织预血管化内皮成纤维细胞构建体
(规格)。这些工程结构一旦植入,就可以很快被血液灌注。使用
以已知的炎症、血管生成和吻合机制为指导,我们将系统地测试
这些创新技术在肌肉下植入物中使用特定抑制剂和基因工程小鼠
模型。通过提供可行的解决方案,预期成果将显着推动该领域向前发展
组织工程面临的主要障碍 - 快速血管化和植入细胞的存活
和纸巾。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Tomlinson其他文献
Stephen Tomlinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Tomlinson', 18)}}的其他基金
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
BLR&D Research Career Scientist Award Application for Dr. Stephen Tomlinson
BLR
- 批准号:
10618250 - 财政年份:2020
- 资助金额:
$ 40.58万 - 项目类别:
BLR&D Research Career Scientist Award Application for Dr. Stephen Tomlinson
BLR
- 批准号:
10451506 - 财政年份:2020
- 资助金额:
$ 40.58万 - 项目类别:
Cell survival in engineered skeletal muscle: The role of complement
工程骨骼肌中的细胞存活:补体的作用
- 批准号:
10189582 - 财政年份:2019
- 资助金额:
$ 40.58万 - 项目类别:
Cell survival in engineered skeletal muscle: The role of complement
工程骨骼肌中的细胞存活:补体的作用
- 批准号:
10449327 - 财政年份:2019
- 资助金额:
$ 40.58万 - 项目类别:
Targeting complement and chronic inflammation after traumatic brain injury
针对脑外伤后的补体和慢性炎症
- 批准号:
9235500 - 财政年份:2017
- 资助金额:
$ 40.58万 - 项目类别:
相似国自然基金
FTL+ALB+脂肪干细胞与CD36+EBF2-内皮细胞通过交互作用影响脂肪组织衰老的机制研究
- 批准号:82370884
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脂肪组织中SIRT3通过抑制外泌体miR-30a-3p调控肝脏自噬影响非酒精性脂肪肝病的机制研究
- 批准号:32360174
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
HNRNPA1通过转录调控KRAS影响脂肪组织葡萄糖稳态的作用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
G9a通过调控肌肉因子影响肝脏及脂肪组织代谢的机理研究
- 批准号:91957114
- 批准年份:2019
- 资助金额:86.0 万元
- 项目类别:重大研究计划
亚油酸通过NFκB-MCP1影响黄姑鱼脂肪组织巨噬细胞浸润机制的研究
- 批准号:41806206
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Mechanisms in the Resolution of Post-Surgical Lymphedema
解决术后淋巴水肿的新机制
- 批准号:
10580412 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Circadian Regulation of In Vitro Differentiated Adipocytes
体外分化脂肪细胞的昼夜节律调节
- 批准号:
10534917 - 财政年份:2022
- 资助金额:
$ 40.58万 - 项目类别:
MANATEE-T1D: Metformin ANd AutomaTEd insulin delivery system Effects on renal vascular resistance, insulin sensitivity, and cardiometabolic function in youth with Type 1 Diabetes
MANATEE-T1D:二甲双胍和自动胰岛素输送系统对 1 型糖尿病青年肾血管阻力、胰岛素敏感性和心脏代谢功能的影响
- 批准号:
10282233 - 财政年份:2021
- 资助金额:
$ 40.58万 - 项目类别:
MiR-23/27/24 Control of Adipose Tissue Macrophage Activation
MiR-23/27/24 控制脂肪组织巨噬细胞激活
- 批准号:
10392850 - 财政年份:2021
- 资助金额:
$ 40.58万 - 项目类别:
MANATEE-T1D: Metformin ANd AutomaTEd insulin delivery system Effects on renal vascular resistance, insulin sensitivity, and cardiometabolic function in youth with Type 1 Diabetes
MANATEE-T1D:二甲双胍和自动胰岛素输送系统对 1 型糖尿病青年肾血管阻力、胰岛素敏感性和心脏代谢功能的影响
- 批准号:
10674617 - 财政年份:2021
- 资助金额:
$ 40.58万 - 项目类别: