Formation and function of lamellipodial morphology in 3D microenvironments
3D 微环境中片状足形态的形成和功能
基本信息
- 批准号:10733474
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAdaptive Immune SystemAddressAdhesionsAffectAnthrax diseaseAntigensBiochemicalBiological AssayBiological ModelsCell physiologyCellsCellular MorphologyCellular biologyCollagenCollagen FiberColorCommunicationComplexComputer Vision SystemsConfocal MicroscopyCouplingCrowdingCytotoxic T-LymphocytesDataDendritic CellsDiffusionElementsEmbryonic DevelopmentEnvironmentExhibitsFibroblastsFutureGenerationsGeometryGlassGrantHumanImageImage AnalysisImmuneImmune systemImmunityInvestigationLaboratoriesLeadLightLocationMacrophageMaintenanceMeasuresMembraneMicroscopeMicroscopicMicroscopyModelingMolecularMolecular Biology TechniquesMorphologyNeoplasm MetastasisNeural Crest CellPathologic ProcessesPenetrationPeripheralPhasePhysiological ProcessesPolymersPropertyProteinsRegulationResolutionSentinelShapesSignal TransductionSliceStructureSurfaceSystemT-LymphocyteTechniquesTestingThinnessThree-Dimensional ImageTissuesTrainingTuberculosisVirusVisualizationWorkcancer cellcancer immunotherapycell motilitycell typecellular imagingcomputerized toolsimaging modalityimmune functionin vivolight microscopylymph nodeslymphatic vesselmicroscopic imagingmigrationmovienovelpathogenpolymerizationpredictive modelingrecruitspatiotemporaltemporal measurementtoolwound healing
项目摘要
Project Summary
Dendritic cells are the sentinels of the immune system. They patrol the body looking for antigens and then
migrate to a lymph node to communicate what they found to T cells and other cells of the adaptive immune
system. These professional migrators and searchers are a critical component of human immunity, and their
migration is targeted or hijacked by multiple pathogens including some pox and herpes viruses, tuberculosis,
and anthrax. Since dendritic cells can activate cytotoxic T cells to attack cancer cells, their migration also
plays a role in cancer immunotherapy strategies. Many cells, including dendritic cells, migrate by extending
lamellipodia. Lamellipodia are thin, planar protrusions that have been extensively studied for cells migrating
on 2D surfaces, such as glass coverslips. Dendritic cells use lamellipodia to find a path through crowded 3D
environments and to enter lymphatic vessels. Lamellipodia and the actin network that composes them have
been studied for decades. However, most molecularly detailed models of lamellipodia regulation and function
were derived from studying cells on 2D surfaces, so we still do not know how cells initiate and extend
lamellipodia in 3D environments. Dr. Driscoll will investigate how actin nucleators organize to generate sheet-
like lamellipodial morphologies in the absence of a surface to guide their generation, as well as how actin
nucleators organize to direct the extension of lamellipodia within crowded 3D environments. As a model of
dendritic cell migration through peripheral tissues, she will study their migration though 3D fibrous collagen
matrices.
Widely available microscopic techniques, such as confocal microscopy, cannot image cells in 3D collagen
with the spatial and temporal resolution required to measure the organization of actin nucleators in
lamellipodia. However, recently developed techniques, such as light-sheet microscopy, are just beginning to
be able to do so. Since light-sheet microscopes can easily produce 3D movies exceeding 1TB in size,
interpreting and even simply visualizing such large amounts of data requires sophisticated computing
workflows. Although Dr. Driscoll has recently developed computational tools to analyze light-sheet microscopy
images, to utilize these tools she needs further training in building and using light-sheet microscopes. The
Danuser and Fiolka labs at UT Southwestern are ideal locations to obtain this training. Dr. Gaudenz Danuser
is an expert at developing computer vision tools to address cell biology questions, whereas Dr. Reto Fiolka is
specialized in light-sheet microscopy of 3D systems. The training Dr. Driscoll receives will enable her to lead
an independent laboratory that focuses on how cells migrate through and interact with their 3D environment.
In summary, Dr. Driscoll will integrate light-sheet microscopy, 3D image analysis, and molecular biology
techniques to determine how lamellipodia form and function in 3D environments.
项目概要
树突状细胞是免疫系统的哨兵。它们在体内巡逻寻找抗原,然后
迁移至淋巴结,将其发现的信息传达给 T 细胞和其他适应性免疫细胞
系统。这些专业的迁徙者和搜索者是人类免疫力的重要组成部分,他们的
迁徙是多种病原体的目标或劫持,包括一些痘病毒和疱疹病毒、结核病、
和炭疽病。由于树突状细胞可以激活细胞毒性 T 细胞来攻击癌细胞,因此它们的迁移也
在癌症免疫治疗策略中发挥作用。许多细胞,包括树突状细胞,通过延伸来迁移
片状伪足。片状伪足是薄的平面突起,已被广泛研究细胞迁移
在 2D 表面上,例如玻璃盖玻片。树突状细胞利用片状伪足在拥挤的 3D 空间中寻找路径
环境并进入淋巴管。板状伪足和组成它们的肌动蛋白网络具有
研究了几十年。然而,大多数板状伪足调节和功能的分子详细模型
来自研究二维表面上的细胞,所以我们仍然不知道细胞如何启动和延伸
3D 环境中的片状伪足。德里斯科尔博士将研究肌动蛋白成核剂如何组织以产生片状-
像在没有表面指导其生成的情况下的片状足形态,以及肌动蛋白如何
成核剂组织起来,在拥挤的 3D 环境中引导片状伪足的延伸。作为一个模型
树突状细胞通过外周组织迁移,她将研究它们通过 3D 纤维胶原蛋白的迁移
矩阵。
广泛使用的显微技术(例如共焦显微镜)无法对 3D 胶原蛋白中的细胞进行成像
具有测量肌动蛋白成核剂组织所需的空间和时间分辨率
片状伪足。然而,最近开发的技术,例如光片显微镜,才刚刚开始
能够这样做。由于光片显微镜可以轻松制作超过 1TB 大小的 3D 电影,
解释甚至简单地可视化如此大量的数据都需要复杂的计算
工作流程。尽管德里斯科尔博士最近开发了计算工具来分析光片显微镜
图像,为了使用这些工具,她需要进一步接受构建和使用光片显微镜的培训。这
UT 西南大学的 Danuser 和 Fiolka 实验室是获得此培训的理想地点。高登兹·丹努瑟博士
是开发计算机视觉工具来解决细胞生物学问题的专家,而 Reto Fiolka 博士是
专门研究 3D 系统的光片显微镜。德里斯科尔博士接受的培训将使她能够领导
一个独立的实验室,专注于细胞如何在 3D 环境中迁移并与其相互作用。
总之,Driscoll 博士将整合光片显微镜、3D 图像分析和分子生物学
确定片状伪足如何在 3D 环境中形成和发挥作用的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meghan Katrien Driscoll其他文献
Meghan Katrien Driscoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meghan Katrien Driscoll', 18)}}的其他基金
Formation and function of lamellipodial morphology in 3D microenvironments
3D 微环境中片状足形态的形成和功能
- 批准号:
10792225 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The role of circadian clock proteins in innate and adaptive immunity
生物钟蛋白在先天性和适应性免疫中的作用
- 批准号:
10582781 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
The role of circadian clock proteins in innate and adaptive immunity
生物钟蛋白在先天性和适应性免疫中的作用
- 批准号:
10892546 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Contribution of macrophages to Neisseria gonorrhoeae pathogenesis
巨噬细胞对淋病奈瑟菌发病机制的贡献
- 批准号:
10360463 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Contribution of macrophages to Neisseria gonorrhoeae pathogenesis
巨噬细胞对淋病奈瑟菌发病机制的贡献
- 批准号:
10569059 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Contribution of macrophages to Neisseria gonorrhoeae pathogenesis
巨噬细胞对淋病奈瑟菌发病机制的贡献
- 批准号:
10090773 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别: