CORE H: Mouse Physiology

核心 H:小鼠生理学

基本信息

  • 批准号:
    8134795
  • 负责人:
  • 金额:
    $ 32.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The past decade has seen the definition of large families and super-families of neural genes whose related but different sequences provide great opportunity if we can understand their functions and exploit their diversity. There can be no doubt that a major challenge facing modern neurobiology is the understanding and manipulation of gene function, both known and unknown. Institutions concerned with the critical issues of mental health and cognitive disability must look beyond gene identification and into the structure and function of the proteins encoded by these newly discovered sequences and the roles these proteins play in the development and behavior of the individual. While the techniques for gene discovery have become less expensive and more accessible, the most powerful techniques for the study of function have become more expensive and more technically demanding. It is increasingly difficult for any single investigator to be able to fully explore the structure of a gene and its regulation, the structure of the protein it encodes, the localization of the protein in the animal, the role of the protein in the normal animal, and the consequences of the absence or alteration of that protein in disease. However, successful exploitation of the gene discovery requires at least portions of each of these activities in part simply to set priorities for further studies. It is the purpose of the BCM-IDDRC cores to provide access to techniques and assays that will allow the investigator to make maximum progress, without undue duplication of effort. The Mouse Physiology Core is designed to provide BCM-IDDRC investigators with a battery of functional assays that will provide initial insight into the neurophysiologic consequences of a specific mutation. This core is considered a significant component of the BCM-IDDRC because it will help address the most common question following the creation of a new mouse mutant; "What is wrong with my mouse?" The BCM-IDDRC proposes to offer its investigators access to a battery of electrophysiologic assays that will help answer this question and direct the investigator's attention to experiments that might more directly address the role of a particular gene in generating a mental retardation or developmental disability phenotype. The BCM-IDDRC at Baylor College of Medicine is well established in studying synaptic transmission and synaptic plasticity in the central nervous system. For many years Dr. Rosenmund's laboratory has been investigating basic function and dysfunction of excitatory and inhibitory synapses as well as hippocampal electrophysiology and plasticity. Dr. Jeff Noebels has been a pioneer in the use of EEG techniques to understand the genetic and molecular basis of epilepsy, and specifically in the use of mouse models to understand epilepsy. The Mouse Physiology Core will be divided into two components. The Synaptic Physiology component of the Core will allow investigators to determine the basic attributes of synaptic function from cultured neurons as well as from acute slices from hippocampus. These preparations will allow for detailed examination of synaptic properties, circuitry function and synaptic plasticity. This information is particulariy germane to the mission of the BCM-IDDRC, given the well-documented role of the hippocampus in learning and memory, and the newly arising notion that autism and related diseases have their etiology (at least in part) at dysfunctional synapses. The procedures established will allow the assessment of several parameters related to normal synaptic physiology. For the presynaptic site, this includes determination of quantal content, readily releasable vesicle pool size, vesicular release probability, synaptic release probability, and several forms of short time facilitation and depression. For the postsynaptic site, this includes mlPSC and mEPSC amplitude and kinetics, GABAA, AMPA and NMDA receptor function, as well as the determination of synaptic and extrasynaptic receptor population. These measurements will be based on patch clamp whole cell recording techniques. Morphological analysis of dendritic structure, synapse formation and synapse activity are provided using quantitative light microscopy analysis. In slices, additional analysis of input-output relationships for various intensities of presynaptic stimulation as well as several short- and long-term forms of synaptic plasticity will be assessed, including: paired-pulse facilitation, post-tetanic potentiation, long-term potentiation (LTP), and longterm depression (LTD). Latter procedures will utilize extracellular recording in the hippocampal slice preparation, using ongoing standard protocols already used here. The Electroencephalography component of the Core will enable BCM-IDDRC investigators to evaluate the development of cortical excitability and brain function over prolonged periods in behaving animal models of mental retardation produced by genetic engineering techniques. Depressed excitability or abnormal brain rhythms are among the eariiest objective phenotypes of genetic human mental retardation syndromes. A high incidence of epilepsy is also associated with mental retardation, and the facility specializes in state of the art seizure detection techniques and assessment of seizure threshold. The ability to correlate spontaneous EEG activity with behavioral analysis by use of synchronized video/EEG monitoring is critical to the interpretation of the mutant nervous system phenotypes studied by the BCM-IDDRC.
在过去的十年里,我们看到了神经基因大家族和超家族的定义,它们的相关但 如果我们能够理解它们的功能并利用它们的多样性,不同的序列将提供巨大的机会。 毫无疑问,现代神经生物学面临的一个主要挑战是理解和 操纵已知和未知的基因功能。关注关键问题的机构 心理健康和认知障碍必须超越基因识别并关注其结构和功能 这些新发现的序列编码的蛋白质以及这些蛋白质在 个人的发展和行为。 虽然基因发现技术变得更便宜、更容易获得,但最强大的技术 研究功能的技术变得更加昂贵且技术要求更高。这是 对于任何一个研究者来说,要充分探索基因及其结构的结构变得越来越困难。 调节、其编码的蛋白质的结构、蛋白质在动物中的定位、 正常动物中的蛋白质,以及疾病中该蛋白质缺失或改变的后果。 然而,基因发现的成功利用至少需要其中每项活动的一部分 部分只是为了确定进一步研究的优先顺序。 BCM-IDDDRC 内核的目的是提供对 技术和测定将使研究者能够取得最大进展,而不会过度重复 的努力。 小鼠生理学核心旨在为 BCM-IDDRC 研究人员提供一系列功能 分析将提供对特定突变的神经生理学后果的初步了解。这个核心 被认为是 BCM-IDDRC 的重要组成部分,因为它将有助于解决最常见的问题 创建新的小鼠突变体后出现的问题; “我的鼠标怎么了?” BCM-IDDDRC 建议为其研究人员提供一系列电生理检测,这将有助于回答这个问题 问题并将研究者的注意力引导到可能更直接地解决某个角色的实验上 产生智力低下或发育障碍表型的特定基因。 贝勒医学院的 BCM-IDDRC 在研究突触传递和 中枢神经系统的突触可塑性。多年来,罗森蒙德博士的实验室一直 研究兴奋性和抑制性突触以及海马的基本功能和功能障碍 电生理学和可塑性。 Jeff Noebels 博士是使用脑电图技术来治疗疾病的先驱。 了解癫痫的遗传和分子基础,特别是使用小鼠模型来 了解癫痫病。 小鼠生理学核心将分为两个部分。突触生理学组成部分 该核心将使研究人员能够确定培养神经元突触功能的基本属性,例如 以及海马体的急性切片。这些准备工作将允许对突触进行详细检查 特性、电路功能和突触可塑性。该信息与我们的使命密切相关 鉴于海马体在学习和记忆中的作用已得到充分证明,BCM-IDDDRC 以及新的 越来越多的人认为自闭症和相关疾病的病因(至少部分)是功能失调的突触。 建立的程序将允许评估与正常突触相关的几个参数 生理。对于突触前位点,这包括测定量子含量、易于释​​放的囊泡 池大小、囊泡释放概率、突触释放概率和几种形式的短时促进 和抑郁症。对于突触后位点,这包括 mlPSC 和 mEPSC 幅度和动力学、GABAA、 AMPA和NMDA受体功能,以及突触和突触外受体的测定 人口。这些测量将基于膜片钳全细胞记录技术。 使用以下方法提供树突结构、突触形成和突触活动的形态学分析 定量光学显微镜分析。在切片中,对各种输入输出关系进行额外分析 突触前刺激的强度以及突触可塑性的几种短期和长期形式将被 评估,包括:配对脉冲促进、强直后增强、长时程增强 (LTP) 和长时程增强 抑郁症(有限公司)。后者的程序将利用海马切片中的细胞外记录 使用此处已使用的正在进行的标准协议进行准备。 核心的脑电图组件将使 BCM-IDDRC 研究人员能够评估 在行为动物模型中长期皮质兴奋性和大脑功能的发展 基因工程技术造成的智力低下。兴奋性低下或大脑异常 节律是遗传性人类智力低下综合征的最早客观表型之一。一个高 癫痫的发病率也与智力低下有关,该设施专门采用最先进的技术 癫痫发作检测技术和癫痫阈值评估。关联自发脑电图的能力 使用同步视频/脑电图监测进行行为分析的活动对于解释 BCM-IDDRC 研究的突变神经系统表型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTIAN ROSENMUND其他文献

CHRISTIAN ROSENMUND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTIAN ROSENMUND', 18)}}的其他基金

CORE H: Mouse Physiology
核心 H:小鼠生理学
  • 批准号:
    8318653
  • 财政年份:
    2011
  • 资助金额:
    $ 32.43万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    7460706
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    6903670
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7586140
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    7072241
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7015005
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    6967013
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    7640959
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7393076
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7217416
  • 财政年份:
    2005
  • 资助金额:
    $ 32.43万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
  • 批准号:
    10639073
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
Project 1: Translational Studies on Temperature and Solvent Effects on Electronic Cigarette-Derived Oxidants
项目1:温度和溶剂对电子烟氧化剂影响的转化研究
  • 批准号:
    10665896
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
Project 2: Informing oral nicotine pouch regulations to promote public health
项目 2:告知口服尼古丁袋法规以促进公共卫生
  • 批准号:
    10666068
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
  • 批准号:
    10797938
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了