A multi-foci objective lens for large scale brain activity recording
用于大规模大脑活动记录的多焦点物镜
基本信息
- 批准号:10731905
- 负责人:
- 金额:$ 32.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAreaBackBehaviorBrainBrain imagingBrain regionCancer BiologyCollectionComplexConfocal MicroscopyFluorescenceGoalsHippocampusImageImmunologyLightMicroscopeMicroscopyModalityMusNeuronsNeurosciencesOptical MethodsOpticsPathway interactionsPatternPenetrationPhotonsPhysiologic pulsePopulationResolutionSamplingScanningSignal TransductionSpeedTechnologyThinnessTimeTissue imagingTissuesbrain tissuebrain volumedesignfabricationhigh resolution imagingimaging modalityimprovedin vivoin vivo imaginglensmetermulti-photonneural circuitneuronal circuitrynoveloptical imagingprogramsthree photon microscopytimelinetwo photon microscopytwo-photon
项目摘要
Abstract
The goal of this project is to develop a novel bifocal catadioptric objective that will allow large-scale recording of
neural circuits in vivo. The objective will enable faster volumetric imaging of large brain regions by simultaneous
two-photon (2P) imaging of shallow layers and three-photon (3P) imaging of deep layers of brain tissues with
improved collection efficiency. Although three-photon microscopy (3PM) allows imaging at depths inaccessible
by two photon microscopy (2PM), 2P excitation generates larger fluorescence signal with lower excitation pulse
energy when imaging at shallow tissue layers. Therefore, for fast imaging across a large depth, the optimum
approach is to use 2PM for the superficial layers and 3PM for the deeper regions simultaneously. Implementation
of this approach inevitably requires the objective lens to generate two focal planes that are separated by a large
axial distance while still maintaining high spatial resolution and large field of view. Simultaneous 2PM and 3PM
will not only allow for utilization of the advantages of both modalities but also for faster volumetric imaging of
large brain columns. We will develop a bifocal catadioptric (i.e., both refractive and reflective) lens based on the
idea of separation the optical paths of the excitation light with different wavelengths. The lens will feature two
focal planes separated axially by ~ 600 µm for the 2P (< 1100 nm) and 3P (>1200 nm) excitation wavelengths.
The design approach also separates the excitation path and the collection path and allows independent
optimization for efficient collection of the emitted fluorescence. The bifocal objective will collect fluorescence
back through non-imaging pathways, which enables the proposed catadioptric objective to have a large collection
numerical aperture and a large collection field of view. The collection efficiency is approximately 5x higher than
the commercially available objective lenses when imaging deep (>1 mm) into the mouse brain. Improving the
signal collection efficiency will immediately increase the frame rate without increasing the excitation power,
enabling high-resolution, high-speed imaging at these depths. We will design, fabricate and validate the novel
objective lens and will combine it with focus-tunable lenses to enable faster volumetric imaging of mouse brains.
The successful completion of this program will immediately enable simultaneous 2P and 3P imaging across a
large range of depth (~ 1.2 mm), such as recording population of neurons across different layers of mouse brains.
The technology developed within this program will have potential impacts in a large number of biomedical fields
such as neuroscience, immunology, and cancer biology.
抽象的
该项目的目标是开发一种新型双焦折反射物镜,可以大规模记录
该目标将能够通过同时对大脑区域进行更快的体积成像。
脑组织浅层双光子(2P)成像和深层脑组织三光子(3P)成像
尽管三光子显微镜 (3PM) 可以在难以到达的深度进行成像。
通过双光子显微镜 (2PM),2P 激发以较低的激发脉冲产生更大的荧光信号
因此,对于大深度的快速成像,这是最佳选择。
方法是对浅层使用 2PM,对深层区域同时使用 3PM。
这种方法不可避免地需要物镜产生两个相距很大的焦平面
轴向距离,同时仍保持高空间分辨率和大视场同时 2PM 和 3PM。
不仅可以利用两种模式的优点,还可以更快地进行体积成像
我们将开发一种基于大脑柱的双焦点折折射(即折射和反射)镜片。
分离不同波长激发光的光路的想法该透镜将具有两个特征。
对于 2P (< 1100 nm) 和 3P (>1200 nm) 激发波长,焦平面轴向间隔约 600 µm。
该设计方法还将激励路径和收集路径分开,并允许独立
优化有效收集发射的荧光 双焦点物镜将收集荧光。
通过非成像路径返回,这使得所提出的折反射物镜能够拥有大量的集合
数值孔径和大收集视场,收集效率大约高出 5 倍。
改善小鼠大脑深处(>1毫米)成像时的市售物镜。
信号采集效率会立即提高帧率,而无需增加激励功率,
我们将设计、制造和验证这种新颖的技术,以实现在这些深度的高分辨率、高速成像。
物镜并将其与可调焦镜头结合起来,以实现更快的小鼠大脑体积成像。
该计划的成功完成将立即实现跨区域同时 2P 和 3P 成像
大范围的深度(~ 1.2 mm),例如记录小鼠大脑不同层的神经元数量。
该计划开发的技术将对许多生物医学领域产生潜在影响
例如神经科学、免疫学和癌症生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRIS XU其他文献
CHRIS XU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRIS XU', 18)}}的其他基金
Understanding the in vivo impact of immunotherapies in splenic lymphoma by intravital three-photon microscopy
通过活体三光子显微镜了解免疫疗法对脾淋巴瘤的体内影响
- 批准号:
10576013 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
- 批准号:
10580393 - 财政年份:2022
- 资助金额:
$ 32.8万 - 项目类别:
Deep and fast imaging using adaptive excitation sources
使用自适应激励源进行深度快速成像
- 批准号:
10516870 - 财政年份:2022
- 资助金额:
$ 32.8万 - 项目类别:
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
- 批准号:
10246271 - 财政年份:2019
- 资助金额:
$ 32.8万 - 项目类别:
Optimization of 3-photon microscopy for Large Scale Recording in Mouse Brain
用于小鼠大脑大规模记录的三光子显微镜优化
- 批准号:
8827026 - 财政年份:2014
- 资助金额:
$ 32.8万 - 项目类别:
Optimization of 3-photon microscopy for Large Scale Recording in Mouse Brain
用于小鼠大脑大规模记录的三光子显微镜优化
- 批准号:
9130300 - 财政年份:2014
- 资助金额:
$ 32.8万 - 项目类别:
Technology development for in vivo deep tissue imaging
体内深层组织成像技术开发
- 批准号:
8442238 - 财政年份:2012
- 资助金额:
$ 32.8万 - 项目类别:
Technology development for in vivo deep tissue imaging
体内深层组织成像技术开发
- 批准号:
8789359 - 财政年份:2012
- 资助金额:
$ 32.8万 - 项目类别:
相似国自然基金
多区域环境因素复杂暴露反应关系的空间联合估计方法研究
- 批准号:82373689
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
- 批准号:72373129
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10521605 - 财政年份:2022
- 资助金额:
$ 32.8万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10671046 - 财政年份:2022
- 资助金额:
$ 32.8万 - 项目类别: