The Role of DLST in Leukemogenesis
DLST 在白血病发生中的作用
基本信息
- 批准号:10381276
- 负责人:
- 金额:$ 7.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-07 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAcute Lymphocytic LeukemiaAcute T Cell LeukemiaAddressAffectAnimal ModelApoptosisAreaBiochemicalBiochemical PathwayBiological AssayCell ProliferationCell RespirationCell SurvivalCellsCitric Acid CycleDNADataDependenceDevelopmentDioxygenasesDiseaseDrug resistanceEnzymesEpigenetic ProcessFishesGene SilencingGenesGeneticGoalsHealthHistonesHumanImpairmentIsocitrate DehydrogenaseLeadLeukemic CellLinkLoss of HeterozygosityMalignant NeoplasmsMediatingMetabolicMetabolic PathwayMetabolic stressMetabolismModelingMusOncogenicPathogenesisPathway interactionsPatientsPharmacologyPhysiologicalPrognosisProtein KinaseProteinsProteolysisRNA InterferenceRecurrent diseaseRefractoryRefractory DiseaseRegulation of ProteolysisRegulatory PathwayRelapseReportingResearchResistanceResourcesRoleSystemT-LymphocyteTherapeutic StudiesTransferaseTreatment outcomeXenograft procedureZebrafishalpha ketoglutaratebasecancer cellcofactordemethylationflexibilityhistone methylationhuman diseaseimprovedin vivoinhibitor/antagonistinnovationinsightknock-downleukemialeukemia treatmentleukemogenesismetabolomicsmortalityneoplastic cellnovelnovel therapeutic interventionnovel therapeuticsoverexpressionpatient derived xenograft modelsmall moleculesmall molecule inhibitorsuccinyl-coenzyme Atargeted treatmenttherapeutic evaluationtumortumor initiationtumor metabolismtumor progressiontumorigenesisubiquitin-protein ligase
项目摘要
PROJECT SUMMARY
Despite treatment improvements, leukemia-associated mortality is still high owing to drug resistance and
disease relapse. Metabolic reprogramming is a hallmark of cancer, and represents an exciting new area of
targeted therapy. Therefore, identification of the key enzyme responsible for metabolic reprogramming and
elucidation of its mechanisms of action in treatment-resistant leukemic cells could lead to novel therapeutic
strategies against the unique metabolic dependence of these cancer cells. We recently reported that
dihydrolipoamide S-succinyltransferase (DLST) serves as a critical metabolic “oncorequisite” enzyme in MYC-
driven leukemogenesis. MYC-dependent T-acute lymphoblastic leukemia (T-ALL) cells reprogram metabolism
by stabilizing DLST protein, and rely heavily on its elevated levels for proliferation and survival. Heterozygous
loss of dlst in zebrafish does not impair development yet significantly delays the onset of MYC-induced T-ALL
that resembles a major subtype of human disease with poor prognosis. DLST is a transferase in the
tricarboxylic acid (TCA) cycle and mediates the conversion of α-ketoglutarate (α-KG) to succinyl-CoA. α-KG is
a key cycle intermediate that simultaneously functions as an obligatory cofactor for α-KG-dependent
dioxygenases (α-KGDO, e.g., demethylases), thus linking cellular metabolism with epigenetic controls of the
cell. We hypothesize that: DLST protein stabilization accelerates α-KG conversion, enhances TCA
cycle function, and suppresses α-KGDO activities, thus promoting leukemic cell proliferation and
survival. In Aim 1 of this application we will apply genetic, pharmacological and biochemical approaches to
determine the mechanisms by which DLST is stabilized in MYC-overexpressing T-ALL cells and identify novel
DLST interactors including its E3 ligase(s). The zebrafish T-ALL model will then be utilized to define the role of
key DLST regulators/interactors in T-ALL pathogenesis. In Aim 2, we will combine the analyses of the in vivo
zebrafish model and human T-ALL cells to identify the biochemical and epigenetic changes associated with
DLST inactivation, as well as functionally characterize key α-KGDO regulated by DLST in T-ALL pathogenesis.
In Aim 3, we will investigate the targetability and compensatory pathways of DLST in relapsed/refractory T-ALL
by using our newly identified DLST inhibitor and in vivo animal models including murine patient-derived
xenografts. The innovation of this application lies in the study of DLST as a novel “oncorequisite” enzyme
that regulates both metabolism and epigenetic status of the cell in a physiologically relevant in vivo zebrafish
system. Indeed, this innovative system has enabled us to identify MYC and AMP-activated protein kinase as
regulators for DLST and isocitrate dehydrogenase 2 as its compensatory gene. This research is significant in
that it will deepen our understanding of leukemia pathogenesis and cancer metabolism, as well as the
metabolo-epigenetic connections in MYC-dependent leukemic cells, with the long-term goal of developing
novel therapeutic strategies against DLST-mediated pathways in cancer cells.
项目概要
尽管治疗方法有所改进,但白血病相关死亡率仍然与耐药性和耐药性有关
疾病复发。代谢重编程是癌症的一个标志,代表着一个令人兴奋的新领域。
因此,需要鉴定负责代谢重编程和的关键酶。
阐明其在难治性白血病细胞中的作用机制可能会带来新的治疗方法
我们最近报道了针对这些癌细胞独特的代谢依赖性的策略。
二氢硫辛酰胺 S-琥珀酰转移酶 (DLST) 是 MYC- 中关键的代谢“致癌必需”酶
MYC 依赖性 T 急性淋巴细胞白血病 (T-ALL) 细胞重编程代谢。
通过稳定 DLST 蛋白,并严重依赖其升高的水平进行增殖和存活。
斑马鱼中 dlst 的缺失不会损害发育,但会显着延迟 MYC 诱导的 T-ALL 的发生
DLST 是一种类似于人类疾病的主要亚型且预后不良的转移酶。
三羧酸 (TCA) 循环并介导 α-酮戊二酸 (α-KG) 转化为琥珀酰辅酶 A。
一种关键的循环中间体,同时充当 α-KG 依赖性的必需辅助因子
双加氧酶(α-KGDO,例如去甲基酶),从而将细胞代谢与表观遗传控制联系起来
我们认为:DLST 蛋白稳定可加速 α-KG 转化,增强 TCA。
循环功能,并抑制α-KGDO活性,从而促进白血病细胞增殖和
在本应用的目标 1 中,我们将应用遗传、药理学和生化方法来解决生存问题。
确定 DLST 在 MYC 过表达 T-ALL 细胞中稳定的机制并鉴定新的
然后,将利用 DLST 相互作用因子(包括其 E3 连接酶)来定义 DLST 相互作用因子的作用。
T-ALL 发病机制中的关键 DLST 调节因子/相互作用因子 在目标 2 中,我们将结合体内分析。
斑马鱼模型和人类 T-ALL 细胞识别与相关的生化和表观遗传变化
DLST 失活,以及 T-ALL 发病机制中 DLST 调节的关键 α-KGDO 的功能特征。
在目标 3 中,我们将研究 DLST 在复发/难治性 T-ALL 中的靶向性和补偿途径
通过使用我们新发现的 DLST 抑制剂和体内动物模型,包括源自小鼠患者的
该应用的创新在于 DLST 作为一种新型“癌必需”酶的研究。
调节生理相关的体内斑马鱼细胞的代谢和表观遗传状态
事实上,这个创新系统使我们能够将 MYC 和 AMP 激活的蛋白激酶识别为
DLST和异柠檬酸脱氢酶2作为其补偿基因的调节因子,这项研究具有重要意义。
它将加深我们对白血病发病机制和癌症代谢以及
MYC 依赖性白血病细胞的代谢-表观遗传联系,长期目标是开发
针对癌细胞中 DLST 介导的途径的新治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Feng其他文献
Hui Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Feng', 18)}}的其他基金
"Oncorequisite" Genes in MYC-mediated Transformation
MYC 介导的转化中的“肿瘤必需”基因
- 批准号:
8625712 - 财政年份:2009
- 资助金额:
$ 7.33万 - 项目类别:
"Oncorequisite" Genes in MYC-mediated Transformation
MYC 介导的转化中的“肿瘤必需”基因
- 批准号:
7654280 - 财政年份:2009
- 资助金额:
$ 7.33万 - 项目类别:
"Oncorequisite" Genes in MYC-mediated Transformation
MYC 介导的转化中的“肿瘤必需”基因
- 批准号:
8403192 - 财政年份:2009
- 资助金额:
$ 7.33万 - 项目类别:
"Oncorequisite" Genes in MYC-mediated Transformation
MYC 介导的转化中的“肿瘤必需”基因
- 批准号:
8444589 - 财政年份:2009
- 资助金额:
$ 7.33万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
AMPK通过Wnt/β-catenin信号通路调控绵羊肌内脂肪前体细胞分化的研究
- 批准号:31402053
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目