Selectivity for Kinesin-driven Transport of Axonal RNA Granules
驱动蛋白驱动的轴突 RNA 颗粒运输的选择性
基本信息
- 批准号:9791030
- 负责人:
- 金额:$ 10.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2020-05-22
- 项目状态:已结题
- 来源:
- 关键词:Afferent NeuronsAlternative SplicingAmyotrophic Lateral SclerosisAreaAxonAxonal TransportBindingBypassCellsCharacteristicsCharcot-Marie-Tooth DiseaseComplexConsensusCytoplasmic GranulesDataDefectDegenerative DisorderDendritesDevelopment PlansDiseaseDisease modelDistalDynein ATPaseEnvironmentFamilyGenesGlutamineGoalsGrantHereditary Motor and Sensory-Neuropathy Type IIHereditary Spastic ParaplegiaImaging TechniquesImpairmentIn VitroIndividualInterruptionIntracellular TransportInvestigationKinesinKnockout MiceLeadLifeLightMass Spectrum AnalysisMediatingMicrotubulesModelingMolecularMotorMotor NeuronsMovementMutateMutationNeurodegenerative DisordersNeuronsNeurosciencesPaclitaxelPathway interactionsPeptidesPeripheral Nervous System DiseasesPost-Translational Protein ProcessingProlineProtein IsoformsProteinsProteomeProteomicsPublic HealthRNARNA SplicingRNA TransportRNA-Binding ProteinsRegulationResearchRoleSpecific qualifier valueSpecificitySpinal GangliaSystemTailTestingTherapeuticTherapeutic InterventionTrainingTranscriptTranslatingTranslationsTransport ProcessZebrafishanterograde transportaxonal degenerationbasecareer developmentdesignexperimental studyhuman diseasein vitro testingin vivoin vivo Modelinnovationinsightlive cell imagingmedical schoolsmembermimeticsmultidisciplinarymutantnervous system disorderneuronal cell bodynovelnovel therapeutic interventionnovel therapeuticspeptidomimeticspreventprotein expressiontherapeutic evaluationtranscriptome sequencingtranscriptomics
项目摘要
Intracellular transport is critical for the function and viability of neurons throughout life. Splicing factor proline-
glutamine rich (SFPQ) is an RNA-binding protein that packages trophic-regulated transcripts, such as Bclw,
into RNA granules (RNAGs). Local translation of these transcripts is critical for protecting axons from
degeneration. The objective of this grant is to understand the mechanism by which SFPQ RNAGs are localized
to axons and translated there. This investigation builds on my key findings that: 1) SFPQ specifically binds to
only one of three members of the kinesin-1 family of motors, KIF5A, and to only one of the associated kinesin
light chains (KLC), KLC1; 2) a newly defined consensus EDxYxE motif within the coiled coil (CC) region of
SFPQ is required for binding to KIF5A/KLC1; and 3) the variable carboxy-terminal tail (CTT) region of KIF5A is
required for binding to SFPQ. These data demonstrating selectivity of the kinesins is highly relevant to human
disease as KIF5A is the only kinesin-1 motor that is mutated in Charcot-Marie-Tooth disease (CMT), hereditary
spastic paraplegia (HSP) and in amyotrophic lateral sclerosis (ALS). Moreover, ALS mutations in SFPQ lie
within the CC region adjacent to EDxYxE motif. Together, I propose a CENTRAL HYPOTHESIS that SFPQ
RNAGs are localized to axons through a highly specific KIF5A/KLC1-dependent transport and that disruption of
this pathway results in KIF5A and SFPQ-related neurological diseases. In this proposal I will test the following
predictions of this Hypothesis: 1) anterograde transport of SFPQ depends on interactions mediated by the CTT
of KIF5A and by KLC1; 2) axonal survival requires KIF5A-mediated transport of SFPQ RNAGs to axons; and
3) Bclw mimetics can prevent axonal degeneration caused by interruption of KIF5A-mediated transport of
SFPQ. These 3 Aims will reveal mechanistic understanding of how defect in specific kinesin-driven transport
characteristically leads to axon degeneration in neurological disease and will assess the therapeutic potential
of a highly innovative Bclw peptide. I have designed an effective training plan to execute this proposal and to
advance in 4 specialized training areas: 1) compartmented neuronal culture system to study spatial regulation
of protein expression; 2) advanced quantitative live cell imaging techniques in axons; 3) transcriptomics and
proteomics to profile and determine regulatory mechanism of specialized motor adaptor complex formation by
alternative splicing and post-translational modifications; and 4) use of in vivo disease models for therapeutic
intervention. My career development plan is designed to be highly collaborative; several advisors are readily
available within the multi-disciplinary environment of the greater Harvard Medical School campus. Upon
conclusion I will initiate the first step towards my overarching goal in understanding how defects in microtubule-
based transport in neurons lead to neurological diseases; why mutations in a specific motor component cause
degeneration in neurons; and to bridge basic neuroscience discovery into new therapeutics against
neurological diseases of sensory and motor neurons including CMT, HSP and ALS.
细胞内运输对于神经元一生的功能和活力至关重要。脯氨酸剪接因子-
富含谷氨酰胺 (SFPQ) 是一种 RNA 结合蛋白,可包装营养调节转录物,例如 Bclw、
成 RNA 颗粒 (RNAG)。这些转录本的本地翻译对于保护轴突免受
退化。这笔赠款的目的是了解 SFPQ RNAG 本地化的机制
到轴突并在那里翻译。这项调查建立在我的主要发现的基础上:1) SFPQ 专门结合到
仅驱动蛋白-1 马达家族的三个成员 KIF5A 之一,以及仅相关驱动蛋白之一
轻链(KLC),KLC1; 2) 卷曲线圈 (CC) 区域内新定义的共有 EDxYxE 基序
与 KIF5A/KLC1 结合需要 SFPQ; 3) KIF5A 的可变羧基末端尾部 (CTT) 区是
绑定到 SFPQ 所需的。这些数据表明驱动蛋白的选择性与人类高度相关
因为 KIF5A 是唯一在夏科-马里-图思病 (CMT) 中发生突变的驱动蛋白-1 马达,遗传性
痉挛性截瘫(HSP)和肌萎缩侧索硬化症(ALS)。此外,SFPQ 中的 ALS 突变位于
在与 EDxYxE 基序相邻的 CC 区域内。我共同提出一个中心假设:SFPQ
RNAG 通过高度特异性的 KIF5A/KLC1 依赖性运输定位于轴突,并且破坏
该通路导致 KIF5A 和 SFPQ 相关的神经系统疾病。在这个提案中我将测试以下内容
该假设的预测:1)SFPQ 的顺行转运取决于 CTT 介导的相互作用
KIF5A 和 KLC1; 2) 轴突存活需要 KIF5A 介导的 SFPQ RNAG 向轴突的转运;和
3) Bclw模拟物可以预防因KIF5A介导的细胞转运中断而引起的轴突变性
SFPQ。这三个目标将揭示对特定驱动蛋白驱动的运输中的缺陷如何发生的机制理解
典型地导致神经系统疾病的轴突变性,并将评估治疗潜力
高度创新的 Bclw 肽。我设计了一个有效的培训计划来执行该建议并
在 4 个专业培训领域取得进展:1)用于研究空间调节的分区神经元培养系统
蛋白质表达; 2)先进的轴突定量活细胞成像技术; 3)转录组学和
蛋白质组学通过以下方法来分析和确定特殊运动适配器复合物形成的调节机制
选择性剪接和翻译后修饰; 4) 使用体内疾病模型进行治疗
干涉。我的职业发展计划旨在高度协作;几位顾问很乐意
在哈佛医学院大校园的多学科环境中可用。之上
结论 我将迈出实现我的总体目标的第一步,即了解微管中的缺陷如何-
神经元的基础运输导致神经系统疾病;为什么特定运动部件的突变会导致
神经元退化;并将基础神经科学发现与新疗法联系起来
感觉和运动神经元的神经系统疾病,包括 CMT、HSP 和 ALS。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yusuke Fukuda其他文献
Yusuke Fukuda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
- 批准号:82370111
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
- 批准号:82303784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
- 批准号:82304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GSE1选择性剪接激活PI3K/Akt通路调控脂质代谢影响衰老进程的机制研究
- 批准号:82360286
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
- 批准号:82373527
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Identifying the function of alternatively spliced TDP43 isoforms and contribution to disease
确定选择性剪接 TDP43 亚型的功能及其对疾病的影响
- 批准号:
10748166 - 财政年份:2023
- 资助金额:
$ 10.66万 - 项目类别:
Effects of TDP-43 Pathology on Innate Antiviral Mechanisms in Neurodegenerative Disease
TDP-43 病理学对神经退行性疾病先天抗病毒机制的影响
- 批准号:
10689062 - 财政年份:2022
- 资助金额:
$ 10.66万 - 项目类别:
Effects of TDP-43 Pathology on Innate Antiviral Mechanisms in Neurodegenerative Disease
TDP-43 病理学对神经退行性疾病先天抗病毒机制的影响
- 批准号:
10537727 - 财政年份:2022
- 资助金额:
$ 10.66万 - 项目类别:
Determining the molecular organization of TDP-43 in liquid spherical annuli and establishing a designer gene therapeutic strategy to degrade TDP-43 aggregates
确定液体球形环中 TDP-43 的分子组织并建立降解 TDP-43 聚集体的设计基因治疗策略
- 批准号:
10589577 - 财政年份:2022
- 资助金额:
$ 10.66万 - 项目类别:
Deubiquitinase USP19 in TDP-43 pathogenesis.
TDP-43 发病机制中的去泛素酶 USP19。
- 批准号:
10463231 - 财政年份:2022
- 资助金额:
$ 10.66万 - 项目类别: