Intuitive Control of a Hybrid Prosthetic Leg During Ambulation
混合假肢在行走过程中的直观控制
基本信息
- 批准号:9789362
- 负责人:
- 金额:$ 62.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-06 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAlgorithmsAmericanAmputationAmputeesAnkleArchitectureArtificial LegAwardBiomechanicsCar PhoneCellular PhoneClassificationClinicClinicalCommunitiesCommunity ParticipationCustomDataData SetDevelopmentDevicesEmploymentEnrollmentEnvironmentFundingGaitGoalsHome environmentHybridsIndividualIntuitionKneeKnee ProsthesisLaboratoriesLearningLegLeisuresLower ExtremityManualsMonitorMotorOutcomeParticipantPatientsPattern RecognitionPhaseProsthesisProtocols documentationQuality of lifeRampRandomizedRandomized Clinical TrialsResearchSafetySignal TransductionSystemTechnologyTestingTorqueTrainingWalkingWorkbasedesignexperiencefallsfootimprovedimproved mobilityinnovationlight weightlimb amputationmobile applicationnovelpowered prosthesisprosthesis controlpsychologicsecondary outcomesensortransmission processweek trial
项目摘要
Project Summary/Abstract
Most individuals with lower limb amputations use passive prostheses, which do not provide energy to assist with
activities such as stair or ramp ascent or sit-to-stand transitions. This limits mobility, in particular for those with
above-knee amputations. Powered leg prostheses could improve the mobility and community participation of
such individuals; however, these devices are heavy, and current control systems require the user to manually
transition between different ambulation activities, which is cumbersome. With prior R01 funding, we developed
an adaptive, hierarchical pattern recognition control system that uses data from sensors on the prosthesis, and
incorporates electromyographic (EMG) signals from the user, depending on their reliability, to determine user
intent and enable safe prosthesis control with automatic, seamless transitions between ambulation activities. A
mobile application allows for rapid tuning of the prosthesis and enables the user to choose between manual or
automatic transitions. With other funding, we developed a novel prosthetic leg that can operate in passive mode
—during level-ground walking or in active mode—during activities such as stair climbing or sit-to-stand
transitions. This approach enables smaller, lighter motors, transmissions, and batteries, making our Hybrid Leg
significantly lighter and quieter than other powered devices. Our long-term objective is to develop clinically viable
technologies to improve the quality of life for lower limb amputees. A lightweight powered prosthesis with a safe,
intuitive control system may increase mobility—facilitating employment, leisure, and community participation
activities—and reduce the physical and psychological consequences of low activity. We will compare the Hybrid
Leg with subjects' passive devices in both in-lab and home environments. In Aim 1, we will transition our adaptive
control system to the Hybrid Leg, train users to walk with this device while the experimenter manually transitions
the device between activity modes, and collect sensor data and EMG signals to create a user-specific pattern
recognition control system. We will then determine the classification accuracy of this system. Aims 2 and 3
together constitute a randomized clinical trial, with AB-BA design, comparing the Hybrid leg with subjects' own
passive devices. In Aim 2, we will provide advanced community-mobility training for either the subject's passive
leg or the Hybrid leg, in random order, to meet both subject-specific and general activity goals necessary for
community ambulation, and complete a full biomechanical assessment of ambulation activities such as stair or
ramp ascent/descent and sit-to-stand transitions with that leg. In Aim 3, subjects will use the same leg for 4
weeks in their home and community, where activity and community participation will be monitored by a custom
smartphone–based app. We will compare the number of steps taken and number of transitions between activities
for each device. We expect that the control system will be safe, with a low classification error rate and without
errors that may cause a fall. In addition, we hypothesize that, using the Hybrid leg, subjects will ambulate more
and transition between activities more frequently, with biomechanics more similar to those of non-amputees.
项目概要/摘要
大多数下肢截肢者使用被动假肢,这种假肢不能提供能量来协助
楼梯或坡道上升或坐站转换等活动限制了活动能力,尤其是对于那些行动不便的人。
膝上截肢术可以改善患者的活动能力和社区参与度。
然而,这些设备很重,并且当前的控制系统需要用户手动操作
我们利用先前的 R01 资金开发了不同移动活动之间的过渡,这很麻烦。
自适应分层模式识别控制系统,使用来自假肢传感器的数据,以及
结合来自用户的肌电图 (EMG) 信号,根据其可靠性来确定用户
意图并通过移动活动之间的自动、无缝转换实现安全的假肢控制。
移动应用程序允许快速调整假肢,并使用户能够选择手动或
通过其他资金,我们开发了一种可以在被动模式下运行的新型假肢。
—在平地行走或处于主动模式期间 —在爬楼梯或坐立等活动期间
这种方法可以实现更小、更轻的电机、变速器和电池,从而使我们的混合腿成为可能。
我们的长期目标是开发临床上可行的设备。
改善下肢截肢者生活质量的技术 一种安全、可靠的轻型动力假肢。
直观的控制系统可以增加流动性——促进就业、休闲和社区参与
活动——并减少低活动对身体和心理的影响。我们将比较混合动力。
在实验室和家庭环境中使用受试者的无源设备的腿在目标 1 中,我们将转变我们的适应性。
混合腿的控制系统,训练用户使用该设备行走,同时实验者手动转换
设备在活动模式之间切换,并收集传感器数据和 EMG 信号以创建用户特定的模式
然后我们将确定该系统的目标 2 和 3 的分类精度。
一起构成一项随机临床试验,采用 AB-BA 设计,将混合腿与受试者自己的腿进行比较
在目标 2 中,我们将为受试者的被动设备提供高级社区移动培训。
腿或混合腿,按随机顺序,以满足特定主题和一般活动目标所需的
社区步行,并完成步行活动的完整生物力学评估,例如爬楼梯或
在目标 3 中,受试者将使用同一条腿进行 4 次斜坡上升/下降和坐立转换。
在他们的家中和社区中度过数周,其中的活动和社区参与将由定制人员进行监控
我们将比较所采取的步数和活动之间的转换次数。
对于每个设备,我们期望控制系统是安全的,分类错误率低并且没有。
此外,我们敢于承认,使用混合腿,受试者会走动更多。
活动之间的转换更加频繁,生物力学与非截肢者更加相似。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Levi John Hargrove其他文献
Levi John Hargrove的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Levi John Hargrove', 18)}}的其他基金
Understanding how Powered Componentry Impacts K2-Level Transfemoral Amputee Gait
了解动力组件如何影响 K2 级经股截肢者步态
- 批准号:
10585944 - 财政年份:2023
- 资助金额:
$ 62.44万 - 项目类别:
A Neuromusculoskeletal Interface for Bionic Arms: A Randomized Crossover Study
仿生手臂的神经肌肉骨骼接口:随机交叉研究
- 批准号:
10577128 - 财政年份:2023
- 资助金额:
$ 62.44万 - 项目类别:
The Functional Importance of Powered Wrist Flexion/Extension and Simultaneous Control for Upper Limb Prostheses
上肢假肢动力手腕屈曲/伸展和同步控制的功能重要性
- 批准号:
10165765 - 财政年份:2018
- 资助金额:
$ 62.44万 - 项目类别:
The Functional Importance of Powered Wrist Flexion/Extension and Simultaneous Control for Upper Limb Prostheses
上肢假肢动力手腕屈曲/伸展和同步控制的功能重要性
- 批准号:
10450839 - 财政年份:2018
- 资助金额:
$ 62.44万 - 项目类别:
Adaptive Recalibration of a Prosthetic Leg Neural Control System
假肢神经控制系统的自适应重新校准
- 批准号:
9054885 - 财政年份:2014
- 资助金额:
$ 62.44万 - 项目类别:
Intuitive Control of a Hybrid Prosthetic Leg During Ambulation
混合假肢在行走过程中的直观控制
- 批准号:
10456766 - 财政年份:2014
- 资助金额:
$ 62.44万 - 项目类别:
Intuitive Control of a Hybrid Prosthetic Leg During Ambulation
混合假肢在行走过程中的直观控制
- 批准号:
10200864 - 财政年份:2014
- 资助金额:
$ 62.44万 - 项目类别:
Adaptive Recalibration of a Prosthetic Leg Neural Control System
假肢神经控制系统的自适应重新校准
- 批准号:
8921846 - 财政年份:2014
- 资助金额:
$ 62.44万 - 项目类别:
Pathophysiology and Rehabilitation of Neural Dysfunction
神经功能障碍的病理生理学和康复
- 批准号:
10612004 - 财政年份:1992
- 资助金额:
$ 62.44万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
- 批准号:
10256832 - 财政年份:2022
- 资助金额:
$ 62.44万 - 项目类别:
Automated System for Accurate Determination of Activities of Daily Living for Independently-Living Persons with Alzheimers Disease and Related Dementias
用于准确确定患有阿尔茨海默病和相关痴呆症的独立生活者的日常生活活动的自动化系统
- 批准号:
10543933 - 财政年份:2022
- 资助金额:
$ 62.44万 - 项目类别:
Using Artificial Intelligence to Optimize Delivery of Weight Loss Treatment
使用人工智能优化减肥治疗的实施
- 批准号:
10210830 - 财政年份:2021
- 资助金额:
$ 62.44万 - 项目类别:
Using Artificial Intelligence to Optimize Delivery of Weight Loss Treatment
使用人工智能优化减肥治疗的实施
- 批准号:
10210830 - 财政年份:2021
- 资助金额:
$ 62.44万 - 项目类别:
BandPass: A Remote Monitoring System for Sarcopenia and Functional Decline
BandPass:肌肉减少症和功能衰退的远程监测系统
- 批准号:
10697080 - 财政年份:2021
- 资助金额:
$ 62.44万 - 项目类别: