Directed growth cone migration by calcium signals
通过钙信号定向生长锥迁移
基本信息
- 批准号:7932519
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureAxonBMP7 geneBehaviorBindingBiochemicalBiologicalBiological AssayBiological ModelsBrainBrain-Derived Neurotrophic FactorCalcineurinCalciumCalcium SignalingCalmodulinCellsCellular StructuresChimeric ProteinsClassificationCommitComplexCouplingCuesDevelopmentEmbryoEmbryonic DevelopmentEnvironmentEquilibriumEventExtracellular SpaceFoundationsFrequenciesGenerationsGoalsGrowth ConesImageImage AnalysisImmunityInflammatory ResponseInjection of therapeutic agentInstructionInterneuronsKnowledgeLasersLeukocyte ChemotaxisLifeLinkMediatingMessenger RNAMethodsModelingMolecularMotor NeuronsMovementNeoplasm MetastasisNerveNeural tubeNeuronsPTK2 genePathway interactionsPatternPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhysiologicalPopulation HeterogeneityPrincipal InvestigatorPropertyPublic HealthReagentRecoveryRegulationResolutionRoleSecond Messenger SystemsSemaphorin-3ASerineSignal PathwaySignal TransductionSourceStagingStimulusSurfaceSystemTechniquesTemperatureTestingTissuesTranslatingTyrosine PhosphorylationWorkWound HealingXenopusangiogenesisaxon growthcalcineurin phosphatasecancer cellcell motilitydigital imagingdirectional cellembryo stage 2experienceextracellularhuman NTN1 proteinin vivoinsightmigrationmutantnetrin-1neurodevelopmentnoveloverexpressionphotoactivationphotolysisprogramspublic health relevancereceptorresearch studyresponsesecond messengerspatiotemporaltreatment strategy
项目摘要
DESCRIPTION (provided by applicant): The cell's ability to sense the environment and to determine the direction and proximity of an extracellular stimulus, followed by correct movement, is fundamental not only for neural development (e.g. neuronal migration and growth cone guidance) but also for immunity, angiogenesis, wound healing, and embryogenesis. Directional cell movement is also crucial for many pathological events, especially cancer-cell metastasis. Therefore, a better understanding of the cellular mechanisms that underlie the directional responses of cells to extracellular stimuli would constitute a major advance of our basic knowledge on directional cell motility and could provide the foundation for developing strategies and treatments for many illnesses. The proposed study will use nerve growth cones as the model to study the spatiotemporal Ca2+ signaling mechanisms underlying directional motility in response to extracellular cues. Calcium is a key second messenger that regulates a variety of cell motility, including directed cell migration. It has been established that Ca2+ mediates growth cone responses to guidance cues, including attractive and repulsive turning responses. Recent studies indicate that different, localized Ca2+ signals elicit a balancing act on the activity of calcium-calmodulin- dependent kinase II (CaMKII) and Calcineurin (CaN) phosphatase to control the attractive and repulsive turning of the growth cone. This application aims to further evaluate the Ca2+ mechanisms that control bidirectional growth cone steering in response to guidance cues. Three specific aims are proposed: (1) to examine the spatiotemporal patterns of cytosolic Ca2+ signals and their role in controlling growth cone steering, (2) to investigate the downstream mechanisms that sense various Ca2+ signals to control growth cone turning, (3) to test the hypothesis that FAK/Src links Ca2+ signaling to tyrosine phosphorylation in growth cone guidance. The proposed studies will take advantage of our rigorous assays of growth cone turning and a combination of high-resolution digital imaging, photoactivation of caged compounds, and molecular manipulation of signaling components. In particular, direct manipulation of intracellular Ca2+ concentrations by focal laser-induced photolysis (FLIP) of caged Ca2+ will be extensively used for dissecting the signaling components. Together, these experiments represent a comprehensive study that aims to understand the Ca2+ signaling mechanisms underlying growth cone motility and guidance. The long-term goal is to understand the molecular and cellular mechanisms that allow axonal growth cones to navigate through complex extracellular spaces for establishing intricate connections. Results from this study will not only advance our knowledge of molecular mechanisms underlying precise neuronal wiring during brain development and recovery, but also provide important insights into the cellular mechanisms underlying directional sensing of migrating cells during important biological responses such as chemotaxis of leukocytes during inflammatory response. PUBLIC HEALTH RELEVANCE: The cell's ability to sense the environment and to determine the direction and proximity of an extracellular stimulus, followed by correct movement, is fundamental not only for neural development (e.g. neuronal migration and growth cone guidance) but also for immunity, angiogenesis, wound healing, and embryogenesis. Directional cell movement is also crucial for many pathological events, especially cancer-cell metastasis. Therefore, a better understanding of the cellular mechanisms that underlie the directional responses of cells to extracellular stimuli would constitute a major advance of our basic knowledge on directional cell motility and could provide the foundation for developing strategies and treatments for many illnesses. The proposed study will use nerve growth cones as the model to study the spatiotemporal Ca2+ signaling mechanisms underlying directional motility in response to extracellular cues. The results from this set of studies will provide significant insights into the cellular mechanisms of growth cone pathfinding, as well as of directed cell movement in many physiological and pathological events. Therefore the work is directly relevant to public health.
描述(由申请人提供):细胞感知环境、确定细胞外刺激的方向和接近度以及随后进行正确运动的能力,不仅对于神经发育(例如神经元迁移和生长锥引导)至关重要,而且对于神经发育(例如神经元迁移和生长锥引导)也至关重要。免疫、血管生成、伤口愈合和胚胎发生。定向细胞运动对于许多病理事件也至关重要,尤其是癌细胞转移。因此,更好地理解细胞对细胞外刺激的定向反应的细胞机制将构成我们关于定向细胞运动的基础知识的重大进步,并且可以为开发许多疾病的策略和治疗提供基础。拟议的研究将使用神经生长锥作为模型来研究响应细胞外信号的定向运动的时空 Ca2+ 信号传导机制。钙是调节多种细胞运动(包括定向细胞迁移)的关键第二信使。已经确定 Ca2+ 介导生长锥对引导信号的反应,包括吸引和排斥的转向反应。最近的研究表明,不同的局部 Ca2+ 信号会引发钙调蛋白依赖性激酶 II (CaMKII) 和钙调神经磷酸酶 (CaN) 磷酸酶活性的平衡作用,以控制生长锥的吸引和排斥转动。该应用旨在进一步评估响应引导线索控制双向生长锥转向的 Ca2+ 机制。提出了三个具体目标:(1)检查胞质 Ca2+ 信号的时空模式及其在控制生长锥转向中的作用,(2)研究感知各种 Ca2+ 信号以控制生长锥转向的下游机制,(3)检验 FAK/Src 将 Ca2+ 信号传导与生长锥引导中的酪氨酸磷酸化联系起来的假设。拟议的研究将利用我们对生长锥转动的严格测定以及高分辨率数字成像、笼状化合物的光活化和信号成分的分子操纵的组合。特别是,通过聚焦激光诱导光解(FLIP)笼中 Ca2+ 来直接控制细胞内 Ca2+ 浓度将被广泛用于剖析信号传导成分。总之,这些实验代表了一项全面的研究,旨在了解生长锥运动和引导背后的 Ca2+ 信号传导机制。长期目标是了解允许轴突生长锥穿过复杂的细胞外空间以建立复杂连接的分子和细胞机制。这项研究的结果不仅将增进我们对大脑发育和恢复过程中精确神经元布线的分子机制的了解,而且还为重要生物反应(例如炎症反应期间白细胞的趋化性)过程中迁移细胞定向感知的细胞机制提供了重要的见解。 。公共健康相关性:细胞感知环境、确定细胞外刺激的方向和接近度以及正确运动的能力,不仅对于神经发育(例如神经元迁移和生长锥引导)至关重要,而且对于免疫、血管生成也至关重要、伤口愈合和胚胎发生。定向细胞运动对于许多病理事件也至关重要,尤其是癌细胞转移。因此,更好地理解细胞对细胞外刺激的定向反应的细胞机制将构成我们关于定向细胞运动的基础知识的重大进步,并且可以为开发许多疾病的策略和治疗提供基础。拟议的研究将使用神经生长锥作为模型来研究响应细胞外信号的定向运动的时空 Ca2+ 信号传导机制。这组研究的结果将为生长锥寻路的细胞机制以及许多生理和病理事件中定向细胞运动提供重要的见解。因此,这项工作与公共卫生直接相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Q Zheng其他文献
James Q Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Q Zheng', 18)}}的其他基金
Actin Regulation of Dendritic Spine Development and Plasticity
树突棘发育和可塑性的肌动蛋白调节
- 批准号:
10608784 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Actin Mechanisms of Postsynaptic Structure and Function
突触后结构和功能的肌动蛋白机制
- 批准号:
8888282 - 财政年份:2015
- 资助金额:
$ 6万 - 项目类别:
Actin Mechanisms of Postsynaptic Structure and Function
突触后结构和功能的肌动蛋白机制
- 批准号:
8998069 - 财政年份:2015
- 资助金额:
$ 6万 - 项目类别:
Activity-dependent translation and release of BDNF
BDNF 的活动依赖性翻译和释放
- 批准号:
8457027 - 财政年份:2012
- 资助金额:
$ 6万 - 项目类别:
Activity-dependent translation and release of BDNF
BDNF 的活动依赖性翻译和释放
- 批准号:
8299681 - 财政年份:2012
- 资助金额:
$ 6万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
- 批准号:
10696538 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别: