Collaborative research: Geometric flow approach to implicit solvation modeling
合作研究:隐式溶剂化建模的几何流方法
基本信息
- 批准号:8309088
- 负责人:
- 金额:$ 30.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAlgorithmsAreaAutomobile DrivingBehaviorBindingBiologicalBiological ModelsBiological ProcessBiologyBiomedical ResearchChargeChemical ModelsChemicalsChemistryCommitCommunitiesComputer softwareComputer-Aided DesignCoupledDrug DesignEducationEducational CurriculumEducational process of instructingEducational workshopElectrostaticsEnsureEnvironmentEquationEquilibriumEvaluationFosteringFree EnergyFreedomIonsKineticsLeadLinkLiquid substanceLiteratureMathematical BiologyMechanicsMethodologyMethodsMicroscopicModelingMolecularMolecular ModelsMolecular StructureMutationPhysicsProcessPropertyResearchResearch PersonnelSamplingSolventsStructureStudentsSurfaceSurface PropertiesSurface TensionSystemThermodynamicsTitrationsTraining SupportValidationVariantaqueousbasedesignexperienceimage processinginnovationinterestintermolecular interactionmolecular modelingmulti-scale modelingphysical propertypressureprogramssimulationsoftware developmentsolute
项目摘要
Solvation is a fundamental process of interactions between solute molecules and solvent or ions in the aqueous environment. Accurate models of solvation are essential prerequisites for the quantitative description and analysis of important biological processes involving the folding, encounter, recognition, and binding of
biomolecular assemblies. Solvation models can be roughly divided into two classes: explicit ones that treat the solvent in molecular or atomic detail and implicit solvent models that treat the solvent as a dielectric continuum.
Because of their efficiency, implicit solvent models have become very popular for a variety of biological applications, including rational drug design, estimations of folding energies, binding affinities, pKa values, and the analysis of structure, mutation, and many other thermodynamic and kinetic quantities. However, ad hoc
assumptions about solvent-solute interfaces are currently used in most implicit solvent models, impeding their reliability, accuracy and efficiency.
The proposed project addresses this problem by developing a differential geometry-based multiscale framework. Upon energy minimization, our framework generates the interface between the continuum solvent and the discrete atomistic solute. In particular, variation of the full free energy functional gives rise to selfconsistently coupled geometric and Poisson-Boltzmann equations. The resulting equations will be solved with advanced algorithms. Extensive validations and applications are designed to ensure that the proposed multiscale paradigm yields accurate solvation properties.
The importance of implicit solvent models is supported by the thousands of applications in the literature.
The proposed research addresses serious limitations in existing models arising from ad hoc assumptions of the solvent-solute interface by the introduction of a new mathematical framework to construct physical interfaces. In total, this proposal offers an innovative approach to an important area in biomolecular modeling .
溶剂化是水环境中溶质分子与溶剂或离子之间相互作用的基本过程。准确的溶剂化模型是定量描述和分析重要生物过程的必要先决条件,这些过程涉及分子的折叠、相遇、识别和结合。
生物分子组装体。溶剂化模型大致可分为两类:将溶剂视为分子或原子细节的显式溶剂模型和将溶剂视为介电连续体的隐式溶剂模型。
由于其效率,隐式溶剂模型在各种生物应用中变得非常流行,包括合理药物设计、折叠能估计、结合亲和力、pKa 值以及结构、突变和许多其他热力学和动力学量的分析。不过,临时
目前大多数隐式溶剂模型都使用有关溶剂-溶质界面的假设,这阻碍了其可靠性、准确性和效率。
拟议的项目通过开发基于微分几何的多尺度框架来解决这个问题。在能量最小化时,我们的框架在连续溶剂和离散原子溶质之间生成界面。特别是,全自由能泛函的变化产生自洽耦合的几何方程和泊松-玻尔兹曼方程。由此产生的方程将用先进的算法求解。广泛的验证和应用旨在确保所提出的多尺度范式产生准确的溶剂化特性。
文献中数以千计的应用证明了隐式溶剂模型的重要性。
该研究通过引入新的数学框架来构建物理界面,解决了现有模型中因溶剂-溶质界面的临时假设而产生的严重局限性。总的来说,该提案为生物分子建模的重要领域提供了一种创新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guowei Wei其他文献
Guowei Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guowei Wei', 18)}}的其他基金
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10619001 - 财政年份:2022
- 资助金额:
$ 30.79万 - 项目类别:
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10446127 - 财政年份:2022
- 资助金额:
$ 30.79万 - 项目类别:
Synergistic integration of topology and machine learning for the predictions of protein-ligand binding affinities and mutation impacts
拓扑和机器学习的协同集成,用于预测蛋白质-配体结合亲和力和突变影响
- 批准号:
10189006 - 财政年份:2018
- 资助金额:
$ 30.79万 - 项目类别:
Synergistic integration of topology and machine learning for the predictions of protein-ligand binding affinities and mutation impacts
拓扑和机器学习的协同集成,用于预测蛋白质-配体结合亲和力和突变影响
- 批准号:
9756427 - 财政年份:2018
- 资助金额:
$ 30.79万 - 项目类别:
Collaborative research: Geometric flow approach to implicit solvation modeling
合作研究:隐式溶剂化建模的几何流方法
- 批准号:
7905172 - 财政年份:2009
- 资助金额:
$ 30.79万 - 项目类别:
Collaborative research: Geometric flow approach to implicit solvation modeling
合作研究:隐式溶剂化建模的几何流方法
- 批准号:
8116535 - 财政年份:2009
- 资助金额:
$ 30.79万 - 项目类别:
Collaborative research: Geometric flow approach to implicit solvation modeling
合作研究:隐式溶剂化建模的几何流方法
- 批准号:
8841553 - 财政年份:2009
- 资助金额:
$ 30.79万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
- 批准号:
10750556 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
EnzyDock-based Multistate and Multiscale Tools for Covalent Drug Design
基于 EnzyDock 的多状态和多尺度共价药物设计工具
- 批准号:
10575904 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
- 批准号:
10836196 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别: