Energy Metabolism, Dopamine Neurons and Neurotoxicity
能量代谢、多巴胺神经元和神经毒性
基本信息
- 批准号:7390699
- 负责人:
- 金额:$ 27.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-05-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAgeAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisAnimalsAntioxidantsAstrocytesBrainCell-Free SystemCellsChronicCitric Acid CycleComplexConditionDataDefectDependenceDependencyDisulfidesElectron TransportEnergy MetabolismEnvironmentEnzymesEventExcisionExposure toFree RadicalsFriedreich AtaxiaFunctional disorderFundingGenderGenesGlutathioneGoalsGrantHydrogen PeroxideImpairmentIn SituInvestigationKnowledgeLaboratoriesLinkMeasuresMediatingMetabolicMetabolismMitochondriaMitochondrial ProteinsModelingMolecularNerve DegenerationNeurodegenerative DisordersNeurogliaNeuronsNumbersOxidative StressParkinson DiseasePathway interactionsPhysiologicalPlayPopulationPrincipal InvestigatorProteinsProteomicsRattusReactionRegulationRelative (related person)RoleRotenoneSynapsesSystemUbiquitin-Proteasomal PathwayWorkdopaminergic neuronenzyme activityfunctional outcomesglutaredoxinimmunocytochemistryin vivoinhibitor/antagonistinterestketoglutarate dehydrogenasemitochondrial dysfunctionneurotoxicitynovelpreventprograms
项目摘要
DESCRIPTION (provided by applicant): Glutathione (GSH) and its associated enzymes comprise a major antioxidant system in brain. Neurodegenerative disease; including Parkinson's, ALS, Alzheimer's and Friedreich's ataxia involve oxidative damage and mitochondrial deficits. It is therefore, essential to develop an understanding of the roles served by GSH during mitochondrial impairment and oxidative insult. One little studied role for GSH is in protein-glutathione-mixed disulfide (PrSSG) formation, but has become of increasing interest as a mechanism for modulation of damage during oxidative stress. Previous work by us showed that during mitochondrial inhibition or oxidative stress, GSH is incorporated into protein to form PrSSG, a reversible reaction catalyzed by glutaredoxin (Grx). Importantly, we identified in brain mitochondria, functional Grx, an enzyme that could play a role in mitochondrial function or dysfunction during oxidative stress. A cytosolic form of Grx has been found in neurons. The overall objective of the current project is to expand our knowledge of the role and mechanism of protein thiolation and dethiolation during acute and chronic oxidative stress. The hypothesis to be examined is that during acute oxidative stress, PrSSG formation serves a reversible and protective function. In contrast, chronic long-term exposure to oxidative stress can result in impaired dethiolation that can contribute to neuronal damage. Aim 1 will investigate cellular Grx and PrSSG formation during acute and chronic mitochondrial inhibition to determine if dethiolation is altered and if so, the underlying mechanism, and if enhancing Grx activity modulates neuronal viability during mitochondria inhibition. GSH and PrSSG have been linked to the ubiquitin proteasomal pathway. This aim will also examine the effects of graded GSH depletion on this pathway under basal or oxidatively challenged conditions. Proteomics will be used to identify the major cellular proteins glutathionylated during oxidative stress Aim 2 will investigate mitochondrial Grx 8 PrSSG formation during mitochondrial impairment. We will expand on previous work during the past funding period to further examine the functional consequences of PrSSG formation in mitochondria and to determine in vivo the consequences of mitochondrial impairmenton mitochondrial Grx activity and PrSSG formation. Proteomics will be used to identify mitochondrial proteins that are glutathionylated during oxidative stress. Little is know regarding Grx in brain. Aim 3 will characterize cytosolic Smitochondrial Grx and PrSSG levels with respect to age, gender and region and will determine i there are differences in Grx activity between synaptic and nonsynaptic mitochondria. Grx has not been identified in astrocytes. This aim will also determine if astrocytes contain Grx or are capable of carrying out thiolation and dethiolation o proteins during oxidative stress. Overall, the project will generate novel information about a little studied role o GSH and its importance during mitochondrial impairment or oxidative stress. The studies will have relevance to neurodegenerative conditions or pathophysiological situations in which metabolism is compromised.
描述(由申请人提供):谷胱甘肽(GSH)及其相关酶构成大脑中的主要抗氧化系统。神经退行性疾病;包括帕金森氏症、肌萎缩侧索硬化症、阿尔茨海默氏症和弗里德赖希氏共济失调都与氧化损伤和线粒体缺陷有关。因此,了解 GSH 在线粒体损伤和氧化损伤过程中的作用至关重要。 GSH 的一个鲜为人知的作用是在蛋白质-谷胱甘肽混合二硫化物 (PrSSG) 的形成中发挥作用,但作为氧化应激期间损伤调节的机制,人们越来越感兴趣。我们之前的工作表明,在线粒体抑制或氧化应激过程中,GSH 与蛋白质结合形成 PrSSG,这是谷氧还蛋白 (Grx) 催化的可逆反应。重要的是,我们在大脑线粒体中发现了功能性 Grx,这种酶可能在氧化应激期间线粒体功能或功能障碍中发挥作用。在神经元中发现了细胞质形式的 Grx。当前项目的总体目标是扩大我们对急性和慢性氧化应激期间蛋白质硫醇化和脱硫醇化的作用和机制的了解。需要检验的假设是,在急性氧化应激期间,PrSSG 的形成具有可逆的保护功能。相反,长期暴露于氧化应激会导致脱硫作用受损,从而导致神经元损伤。目标 1 将研究急性和慢性线粒体抑制期间细胞 Grx 和 PrSSG 的形成,以确定脱硫基作用是否改变,如果改变,其潜在机制,以及增强 Grx 活性是否会在线粒体抑制期间调节神经元活力。 GSH 和 PrSSG 与泛素蛋白酶体途径有关。这一目标还将研究在基础或氧化挑战条件下分级 GSH 消耗对该途径的影响。蛋白质组学将用于识别氧化应激期间谷胱甘肽化的主要细胞蛋白,目标 2 将研究线粒体损伤期间线粒体 Grx 8 PrSSG 的形成。我们将在过去的资助期间扩展之前的工作,以进一步检查线粒体中 PrSSG 形成的功能后果,并确定体内线粒体损伤对线粒体 Grx 活性和 PrSSG 形成的影响。蛋白质组学将用于识别氧化应激期间谷胱甘肽化的线粒体蛋白质。关于大脑中的 Grx 我们知之甚少。目标 3 将表征细胞质线粒体 Grx 和 PrSSG 水平与年龄、性别和区域的关系,并将确定突触和非突触线粒体之间 Grx 活性的差异。星形胶质细胞中尚未鉴定出 Grx。这一目标还将确定星形胶质细胞是否含有 Grx 或是否能够在氧化应激期间对蛋白质进行硫醇化和脱硫醇化。总体而言,该项目将产生有关 GSH 的一些研究较少的作用及其在线粒体损伤或氧化应激期间的重要性的新信息。这些研究将与新陈代谢受损的神经退行性疾病或病理生理情况相关。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells.
脂质体谷胱甘肽提供细胞内谷胱甘肽的维持和中脑神经元细胞的神经保护。
- DOI:
- 发表时间:2010-10
- 期刊:
- 影响因子:4.4
- 作者:Zeevalk, Gail D;Bernard, Laura P;Guilford, F T
- 通讯作者:Guilford, F T
Oxidative stress during energy impairment in mesencephalic cultures is not a downstream consequence of a secondary excitotoxicity.
中脑培养物能量损伤期间的氧化应激不是继发性兴奋性毒性的下游结果。
- DOI:
- 发表时间:2000
- 期刊:
- 影响因子:3.3
- 作者:Zeevalk, G D;Bernard, L P;Nicklas, W J
- 通讯作者:Nicklas, W J
Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson's disease.
1-甲基-4-苯基吡啶鎓的慢性脑室内给药作为帕金森病的进展模型。
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:4.1
- 作者:Sonsalla, Patricia K;Zeevalk, Gail D;German, Dwight C
- 通讯作者:German, Dwight C
Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson's disease and catecholamine-associated diseases.
多巴胺及其代谢物抑制脑线粒体呼吸:对帕金森病和儿茶酚胺相关疾病的影响。
- DOI:
- 发表时间:2004-11
- 期刊:
- 影响因子:0
- 作者:Gluck, Martin R;Zeevalk, Gail D
- 通讯作者:Zeevalk, Gail D
Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides.
多巴胺抑制脑线粒体呼吸:H(2)O(2) 和羟基自由基参与,但谷胱甘肽-蛋白质混合二硫化物不参与。
- DOI:
- 发表时间:2002-07
- 期刊:
- 影响因子:4.7
- 作者:Gluck, Martin;Ehrhart, Julie;Jayatilleke, Elizabeth;Zeevalk, Gail D
- 通讯作者:Zeevalk, Gail D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAIL D ZEEVALK其他文献
GAIL D ZEEVALK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAIL D ZEEVALK', 18)}}的其他基金
ENERGY METABOLISM, DOPAMINE NEURONS AND NEUROTOXICITY
能量代谢、多巴胺神经元和神经毒性
- 批准号:
6187988 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
ENERGY METABOLISM, DOPAMINE NEURONS AND NEUROTOXICITY
能量代谢、多巴胺神经元和神经毒性
- 批准号:
2892218 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
ENERGY METABOLISM, DOPAMINE NEURONS AND NEUROTOXICITY
能量代谢、多巴胺神经元和神经毒性
- 批准号:
6539920 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
ENERGY METABOLISM, DOPAMINE NEURONS AND NEUROTOXICITY
能量代谢、多巴胺神经元和神经毒性
- 批准号:
2607418 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
ENERGY METABOLISM, DOPAMINE NEURONS AND NEUROTOXICITY
能量代谢、多巴胺神经元和神经毒性
- 批准号:
6318087 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
ENERGY METABOLISM, DOPAMINE NEURONS AND NEUROTOXICITY
能量代谢、多巴胺神经元和神经毒性
- 批准号:
6393868 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
Energy Metabolism, Dopamine Neurons and Neurotoxicity
能量代谢、多巴胺神经元和神经毒性
- 批准号:
6918205 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
Energy Metabolism, Dopamine Neurons and Neurotoxicity
能量代谢、多巴胺神经元和神经毒性
- 批准号:
7013105 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
Energy Metabolism, Dopamine Neurons and Neurotoxicity
能量代谢、多巴胺神经元和神经毒性
- 批准号:
7215532 - 财政年份:1998
- 资助金额:
$ 27.28万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 27.28万 - 项目类别:
Patterns in Women's Unmet Sexual and Reproductive Healthcare Needs Over the Life Course
女性一生中未满足的性和生殖保健需求的模式
- 批准号:
10677345 - 财政年份:2023
- 资助金额:
$ 27.28万 - 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
- 批准号:
10677051 - 财政年份:2023
- 资助金额:
$ 27.28万 - 项目类别:
The role and regulation of mitochondrial localization in mature neurons.
成熟神经元线粒体定位的作用和调节。
- 批准号:
10634116 - 财政年份:2023
- 资助金额:
$ 27.28万 - 项目类别: