New Approaches to Sponge-Microbial Symbioses
海绵-微生物共生的新方法
基本信息
- 批准号:8015286
- 负责人:
- 金额:$ 9.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAgarAntibioticsAquacultureArtsBacteriaBiological AssayCancer CenterChemicalsChemistryClinical ResearchCollectionCommunicable DiseasesCommunitiesCulture TechniquesDetectionDevelopmentDiffusionDiseaseEvaluationGeneral PractitionersGermanyGrantGrowthHigh Pressure Liquid ChromatographyHumanIn SituIn VitroIncubatedLibrariesLifeLightLiquid substanceMalignant NeoplasmsMass FragmentographyMembraneMethodsMolecularMonitorMulti-Drug ResistancePatternPharmaceutical PreparationsPolymersPoriferaProductionResearchRoleSamplingScreening procedureSeawaterSeriesSimulateSourceSpecialistStructureSymbiosisTechniquesTemperatureTestingTissuesTuberculosisUniversitiesVariantWorkdenaturing gradient gel electrophoresisdrug candidatedrug developmentdrug discoverydrug resistant bacteriafungusin vitro Assayin vivoinnovationinsightinterestmarine natural productmarine organismmicrobialmicrobial communitymicroorganismnovelnovel strategiespathogenic bacteriaprograms
项目摘要
This proposal aims to gain a better understanding of sponge-bacterial associations and, in particular, to
determine which bacteria are involved and how stable these associations are. Understanding such
symbioses is predicted to yield new approaches for the aquaculture of pharmacologically-active sponges or
the cultivation of the producing bacterial strains. Such methods would have enormous potential to solve the
supply problem of pharmaceutically-active marine natural products. We intend to use molecular techniques
such as Denaturing Gradient Gel Electrophoresis (DGGE) to monitor the microbial communities in sponges
as well as to apply state-of-the-art chemical analysis in order to determine the corresponding secondary
metabolite profiles. Furthermore, we propose to adopt the innovative technique of Diffusion Growth
Chambers (DGCs) to the cultivation of previously "unculturable" sponge bacteria. DGCs are essentially
semi-permeable membranes filled with homogenized sponge tissue and agar. This immobilizes bacteria
inside the polymer membranes, while simultaneously exposing bacteria to the "sponge chemistry". These
techniques will allow us to examine whether: 1) changes in sponge secondary metabolites correlate with
changes in sponge-associated microbial communities; 2) DGCs allow culturing of previously "unculturable"
sponge bacteria; and 3) symbiotic sponge bacteria or sponges themselves yield new, interesting,
pharmacologically-active compounds. In addition to new insights on sponge-bacterial symbiosis (e.g. are ;
sponge bacteria generalists or specialists?), we will create a library of potentially unique bacterial strains
isolated from sponges with the new DGC technique. Isolated sponge bacteria will be grown out and
extracted, and extracts screened for possible new anticancer or antiinfectant metabolites. Activity in either
screen will be followed by the isolation and structure elucidation of the active secondary metabolites.
To effectively treat diseases such as cancer or tuberculosis (caused by multi-drug-resistant bacteria), it is
important to develop new drugs. Although several potential drug candidates have been isolated from marine
organisms, further development is often hampered by a supply problem. Our research aims to identify new
drug candidates from microbial sources and simultaneously develop new culturing techniques to address the
supply problem
该提案旨在更好地了解海绵-细菌关联,特别是
确定涉及哪些细菌以及这些关联的稳定性。了解这样的
预计共生将产生具有药理活性的海绵或水产养殖的新方法
生产菌株的培养。这些方法将具有解决问题的巨大潜力
具有药用活性的海洋天然产物的供应问题。我们打算使用分子技术
例如变性梯度凝胶电泳 (DGGE) 来监测海绵中的微生物群落
以及应用最先进的化学分析以确定相应的次级
代谢物概况。此外,我们建议采用扩散生长的创新技术
Chambers(DGC)用于培养以前“无法培养”的海绵细菌。 DGC 本质上是
充满均质海绵组织和琼脂的半透膜。这可以固定细菌
聚合物膜内部,同时将细菌暴露于“海绵化学”。这些
技术将使我们能够检查:1)海绵次生代谢物的变化是否与
海绵相关微生物群落的变化; 2) DGC 允许培养以前“不可培养的”
海绵细菌; 3)共生海绵细菌或海绵本身产生新的、有趣的、
具有药理活性的化合物。除了关于海绵细菌共生的新见解(例如:
海绵细菌通才还是专家?),我们将创建一个潜在独特细菌菌株的库
采用新的 DGC 技术从海绵中分离出来。分离出来的海绵细菌将会生长出来,
提取,并筛选提取物中可能的新抗癌或抗感染代谢物。活动在任一
筛选之后将进行活性次生代谢物的分离和结构阐明。
为了有效治疗癌症或结核病(由多重耐药细菌引起)等疾病,
对开发新药很重要。尽管已经从海洋中分离出几种潜在的候选药物
生物体的进一步发展常常受到供应问题的阻碍。我们的研究旨在确定新的
从微生物来源寻找候选药物,同时开发新的培养技术来解决
供应问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER J SCHUPP其他文献
PETER J SCHUPP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER J SCHUPP', 18)}}的其他基金
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Engineering photostable fluorescent proteins and biosensors using transcriptomic mining and massive-throughput single-cell screening
使用转录组挖掘和大通量单细胞筛选来工程光稳定荧光蛋白和生物传感器
- 批准号:
10610472 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Mechanisms underlying cell-fate patterns in yeast communities
酵母群落细胞命运模式的潜在机制
- 批准号:
8626605 - 财政年份:2010
- 资助金额:
$ 9.85万 - 项目类别:
Molecular Biology, Biochemistry and Histology Core
分子生物学、生物化学和组织学核心
- 批准号:
7750840 - 财政年份:2009
- 资助金额:
$ 9.85万 - 项目类别: