Structure-guided functional analysis of GluA4-NPTX2 interaction during PVIN homeostatic scaling
PVIN 稳态缩放过程中 GluA4-NPTX2 相互作用的结构引导功能分析
基本信息
- 批准号:10808384
- 负责人:
- 金额:$ 10.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAffinityBindingBinding SitesBiochemicalBiochemistryBiologyBiophysicsBrainCationsCell Adhesion MoleculesCell surfaceCellsComplexCryoelectron MicroscopyDataDiseaseDisinhibitionElectrophysiology (science)Excitatory SynapseExhibitsFunctional disorderFutureGeneticGlutamate ReceptorGlutamatesGoalsHealthHumanInterneuronsLearningMembraneMemoryMental disordersMentorsMethodsMissionModelingMolecularMusMutagenesisN-terminalNeuronsNeurosciencesNeurotransmitter ReceptorParvalbuminsPathologyPhysiologyPositioning AttributeProcessPropertyProteinsRegulationResearchRoleSchizophreniaStructural ModelsStructureSurfaceSynapsesSynaptic plasticityTechniquesTestingTherapeuticTrainingTransgenic MiceUnited States National Institutes of HealthWorkantagonistcareerdesignexcitatory neuronexpectationextracellularfunctional outcomeshuman diseaseimprovedinnovationinsightlight microscopymouse modelmutantnervous system disorderneuronal pentraxinneuropsychiatric disorderparticlepharmacologicpostsynapticpresynapticpreventreceptorresponsestoichiometrystructural biologysynaptic functiontenure tracktherapeutic developmenttherapeutic target
项目摘要
PROJECT SUMMARY
AMPA-type glutamate receptors (AMPARs) are the major excitatory neurotransmitter receptors in the
brain and changes in AMPAR number at synapses underlie learning and memory as well as human disease. A
detailed understanding of how AMPARs are organized at synapses is critical to understand how synaptic
strength is regulated and for the development of therapeutics to correct circuit imbalances in human disease.
The long-term goal of this proposal is to use Cryo-EM to understand how the structural basis of AMPAR
N-terminal domain interactions (NTDs) drive functional outcomes such as increased AMPAR accumulation and
synaptic strength. The rationale for this approach is twofold 1) it will help resolve long-standing questions about
the regulation of key neurotransmitter receptors; and 2) a detailed structural model of AMPARs participating in
key regulatory complexes will guide future therapeutic approaches that seek to alter the strength of excitatory
input onto neurons implicated in psychiatric illnesses like schizophrenia. The adhesion protein NPTX2 binds to
AMPARs, clusters AMPARs at synapses, and is required for homeostatic scaling of interneuron-specific GluA4-
containing AMPARs. Therefore, NPTX2-dependent GluA4 scaling is an ideal model for testing the hypothesis
that direct extracellular interactions with AMPARs control synaptic strength. This approach is innovative because
models of AMPAR plasticity have never been observed in structural detail. This research is significant because
it will yield new insights into how AMPAR interactions drive plasticity and how this can be exploited for therapeutic
benefit in the future. An example of such an approach would be a structure-guided therapeutic strategy for
clustering GluA4 on the surface of Parvalbumin-expressing interneurons (PVINs), which exhibit lowered
excitatory drive in models of schizophrenia.
The long-term goal of this project will be achieved with the following two specific aims: 1) Determine the
structure of the NPTX2/GluA4 complex via single particle Cryo-EM. and 2) Test whether NPTX2 drives
GluA4 PVIN scaling through a direct interaction. For the first aim we will employ single-particle Cryo-EM to
solve the structure of the activity-regulated synaptic adhesion molecule NPTX2 in complex with the interneuron-
specific GluA4 AMPARs. For the second aim, we will employ transgenic mouse models, biochemistry, neuron
culture, confocal light microscopy, and electrophysiology to test the hypothesis that direct binding of NPTX2 to
the NTD of GluA4 drives homeostatic scaling in disease-associated PVINs.
The applicant has proposed this work in part to further their long-term goal of establishing an independent
research career connecting the structure of synaptic proteins to their synaptic function. The candidate will
undertake extensive training in Cryo-EM and biophysics which will be facilitated by an expert mentoring team
composed of an AMPAR Cryo-EM expert, an AMPAR plasticity expert, and an expert in NPTX2, all of whom will
mentor the applicant through the transition to a tenure track academic position.
项目概要
AMPA 型谷氨酸受体 (AMPAR) 是大脑中主要的兴奋性神经递质受体
大脑和突触 AMPAR 数量的变化是学习和记忆以及人类疾病的基础。一个
详细了解 AMPAR 在突触中的组织方式对于了解突触如何组织至关重要
强度得到调节,并用于开发治疗方法以纠正人类疾病中的回路不平衡。
该提案的长期目标是使用 Cryo-EM 来了解 AMPAR 的结构基础如何
N 端结构域相互作用 (NTD) 驱动功能结果,例如增加 AMPAR 积累和
突触强度。这种方法的理由有两个:1)它将有助于解决长期存在的问题
关键神经递质受体的调节; 2)参与的AMPAR的详细结构模型
关键的调节复合物将指导未来寻求改变兴奋强度的治疗方法
输入到与精神分裂症等精神疾病有关的神经元。粘附蛋白 NPTX2 结合
AMPAR,在突触处聚集 AMPAR,是中间神经元特异性 GluA4- 稳态缩放所必需的
含有 AMPAR。因此,NPTX2 依赖性 GluA4 缩放是检验假设的理想模型
直接细胞外与 AMPAR 的相互作用控制突触强度。这种方法是创新的,因为
AMPAR 塑性模型从未在结构细节中被观察到。这项研究意义重大,因为
它将产生关于 AMPAR 相互作用如何驱动可塑性以及如何将其用于治疗的新见解
将来受益。这种方法的一个例子是结构引导的治疗策略
将 GluA4 聚集在表达小清蛋白的中间神经元 (PVIN) 表面,其表现出降低的
精神分裂症模型中的兴奋性驱动。
本项目的长期目标将通过以下两个具体目标来实现: 1)确定
通过单颗粒冷冻电镜观察 NPTX2/GluA4 复合物的结构。 2)测试NPTX2是否驱动
GluA4 PVIN 通过直接相互作用进行缩放。对于第一个目标,我们将采用单粒子冷冻电镜
解决了活性调节突触粘附分子 NPTX2 与中间神经元复合物的结构
特定的 GluA4 AMPAR。对于第二个目标,我们将采用转基因小鼠模型、生物化学、神经元
培养、共焦光学显微镜和电生理学来测试 NPTX2 直接结合的假设
GluA4 的 NTD 驱动疾病相关 PVIN 的稳态缩放。
申请人提出这项工作的部分原因是为了进一步推进他们建立独立的长期目标
将突触蛋白的结构与其突触功能联系起来的研究生涯。候选人将
接受冷冻电镜和生物物理学方面的广泛培训,并由专家指导团队提供协助
由 AMPAR 冷冻电镜专家、AMPAR 塑性专家和 NPTX2 专家组成,他们都将
指导申请人过渡到终身教职。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Dylan Hale其他文献
William Dylan Hale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Integrin activation during neutrophil adhesion and vascular inflammation
中性粒细胞粘附和血管炎症期间的整合素激活
- 批准号:
10822018 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
- 批准号:
10760187 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Proteomics based mapping of cardiac extracellular matrix to define sex and age-dependent changes
基于蛋白质组学的心脏细胞外基质图谱来定义性别和年龄依赖性变化
- 批准号:
10751473 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Multifunctional Roles of AgI/II Family Proteins
AgI/II 家族蛋白的多功能作用
- 批准号:
10750344 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别: