Translational Fidelity in Eukaryotes
真核生物的翻译保真度
基本信息
- 批准号:7849893
- 负责人:
- 金额:$ 24.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsAnti-Bacterial AgentsAntiviral AgentsAreaBiochemicalBiologicalBiological ProcessCellsClinicalCollaborationsCommunicationCommunitiesComplexDiseaseDrug Delivery SystemsDrug DesignElementsEukaryotaFoundationsGoalsHIV-1HumanInfectionLinkMaintenanceMalignant NeoplasmsMediatingMessenger RNAModelingModificationMolecularMolecular GeneticsMolecular ModelsMusMutationOrganismPathway interactionsPatientsPersonsPositioning AttributeProcessProliferatingPropertyProteinsRNAReading FramesResearchResearch PersonnelRibosomal FrameshiftingRibosomal ProteinsRibosomal RNARibosomesSaccharomyces cerevisiaeSignal TransductionSocietiesStructureSystemT-LymphocyteTerminator CodonTransfer RNATranslationsViralVirusWorkYeastsabstractingbaseblastomere structurecancer cellclinical applicationcricket paralysis virusdesigndevelopmental diseasefightingmeetingsmolecular modelingmutantnanomachinepositional cloningprogramsribosomal protein L2ribosomal protein L29stemtool
项目摘要
ABSTRACT
With the availability of atomic scale structures of ribosomes, the next critical task is to link ribosome
structure with biological function. At the biological level, we have been exploring how ribosomes recognize
termination codons and maintain translational reading frame using translational recoding signals of viral
origin. Viral recoding is important for virus propagation, and their mRNA-based recoding signals have
proved to be of great utility in elucidating the molecular mechanisms underlying these essential tasks.
These studies have been based on the yeast Saccharomyces cerevisiae model eukaryotic organism
because it provides researchers with the most advanced, diverse, and robust toolbox available. Further,
we have built upon this foundation to develop a robust and synergistic combination of molecular genetic,
biochemical, structural, and molecular modeling tools. This has enabled us to show that both the
biophysical interactions between ribosomal proteins, rRNAs and tRNAs, and the biochemical properties of
ribosome-associated enzymatic activities are important for proper reading frame maintenance and stop
codon recognition. On a broader scale, our work is defining the allosteric communication pathways that
connect and coordinate different functional centers of the ribosome with one another. The broad goal of
this proposal is to further define how ribosome structure influences function. Aim 1 will determine the
effects of targeted mutations on yeast ribosome structure and function. Specifically, reverse genetics
approaches will be applied to define the functions of specific ribosomal proteins and ribosomal RNAs.
These studies include expansion to examine the effects of two ribosome-associated mutations in
mammalian systems. The second aim will characterize the interactions between ribosomes the Cricket
Paralysis Virus Internal Ribosome Entry Signal (CRPV IRES), and the HIV-1 programmed -1 ribosomal
frameshift signal. The proposed collaborations represent logical expansions of our work into new and
exciting areas. We also anticipate that during the course of the proposed studies, breakthroughs will
continue to be made in the area of ribosome structure, and that new discoveries relevant to ribosomes and
disease will be unveiled. The proposed program will position us to quickly capitalize on these, providing a
strong foundation for new and unanticipated discovery opportunities. In the end, this work will make
significant contributions to the scientific and clinical communities by both deepening our understanding of
the relationship between ribosome structure and function, while broadening our view of translational fidelity
and disease. PROJECT NARRATIVE
Proliferating cells, be they embryonic cells busily creating new persons, T-cells fighting
off infection, or cancer cells overwhelming the patient, absolutely require large numbers
of highly accurate ribosomes to meet their needs for synthesis of new proteins.
Ribosomes, the central component of this process, are complex biological
nanomachines composed of many protein and RNA molecules, and the overall goal of
the proposed research is to begin to understand how the atomic scale structure of the
ribosome ultimately determines its function. A deeper understanding of the relationship
between ribosome structure and function will aid the rational design of new classes of
drugs designed to target a diverse array of clinical applications including antiviral and
antibacterial agents, as well as drugs targeting a diverse array of cancers,
developmental disorders, and other critical diseases afflicting society.
抽象的
借助核糖体的原子尺度结构的可用性,下一个关键任务是链接核糖体
具有生物功能的结构。在生物学一级,我们一直在探索核糖体如何识别
终止密码子并使用病毒的翻译重新编码信号维护翻译阅读框
起源。病毒重新编码对于病毒繁殖很重要,其基于mRNA的重新编码信号具有
事实证明,在阐明这些基本任务的分子机制方面非常有用。
这些研究基于酿酒酵母模型真核生物的基础
因为它为研究人员提供了最先进,最多样化和强大的工具箱。更远,
我们已经建立在这个基础上,以发展分子遗传的强大而协同的结合,
生化,结构和分子建模工具。这使我们能够证明
核糖体蛋白,RRNA和TRNA之间的生物物理相互作用,以及生化特性
核糖体相关的酶活性对于适当的阅读框架维护和停止很重要
密码子识别。在更广泛的规模上,我们的工作定义了变构的交流途径
将核糖体的不同功能中心连接并互相协调。广泛的目标
该建议是进一步定义核糖体结构如何影响功能。 AIM 1将确定
靶向突变对酵母核糖体结构和功能的影响。具体而言,反向遗传学
方法将用于定义特定核糖体蛋白和核糖体RNA的功能。
这些研究包括扩展以检查两个核糖体相关突变在
哺乳动物系统。第二个目标将表征核糖体之间的相互作用
麻痹病毒内部核糖体进入信号(CRPV IRES)和HIV -1编程-1核糖体
移码信号。拟议的合作代表了我们工作的逻辑扩展到新的和
令人兴奋的地区。我们还预计,在拟议的研究过程中,突破将
继续在核糖体结构区域制造,以及与核糖体和
疾病将被揭露。拟议的计划将使我们迅速利用这些计划,提供
为新的和意外的发现机会的强大基础。最后,这项工作将成为
通过加深我们对科学和临床社区的重要贡献
核糖体结构与功能之间的关系,同时扩大了我们对翻译保真度的看法
和疾病。项目叙述
增殖细胞,无论它们是胚胎细胞忙于创建新人,T细胞战斗
关闭感染或癌细胞压倒患者,绝对需要大量
高度精确的核糖体以满足其合成新蛋白质的需求。
核糖体是该过程的核心组成部分,是复杂的生物学
纳米机器由许多蛋白质和RNA分子组成,是
拟议的研究旨在开始了解如何
核糖体最终确定其功能。对关系的更深入的了解
核糖体结构和功能之间将有助于新类的合理设计
旨在针对各种临床应用的药物,包括抗病毒和
抗菌剂以及针对多种癌症的药物,
发育障碍和其他严重疾病困扰着社会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan D Dinman其他文献
Jonathan D Dinman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan D Dinman', 18)}}的其他基金
Regulation of programmed -1 ribosomal frameshifting by micro-RNAs
micro-RNA 对程序性 -1 核糖体移码的调节
- 批准号:
9006443 - 财政年份:2015
- 资助金额:
$ 24.87万 - 项目类别:
Regulation of programmed -1 ribosomal frameshifting by micro-RNAs
micro-RNA 对程序性 -1 核糖体移码的调节
- 批准号:
9150632 - 财政年份:2015
- 资助金额:
$ 24.87万 - 项目类别:
Regulation of programmed -1 ribosomal frameshifting by micro-RNAs
micro-RNA 对程序性 -1 核糖体移码的调节
- 批准号:
9278237 - 财政年份:2015
- 资助金额:
$ 24.87万 - 项目类别:
X-linked Dyskeratosis Congenita and ribosomal frameshifting
X连锁先天性角化不良和核糖体移码
- 批准号:
8761841 - 财政年份:2014
- 资助金额:
$ 24.87万 - 项目类别:
X-linked Dyskeratosis Congenita and ribosomal frameshifting
X连锁先天性角化不良和核糖体移码
- 批准号:
8894573 - 财政年份:2014
- 资助金额:
$ 24.87万 - 项目类别:
Characterization of the SARSCoV frameshift signal
SARSCoV 移码信号的表征
- 批准号:
7884348 - 财政年份:2006
- 资助金额:
$ 24.87万 - 项目类别:
Characterization of the SARSCoV frameshift signal
SARSCoV 移码信号的表征
- 批准号:
7651192 - 财政年份:2006
- 资助金额:
$ 24.87万 - 项目类别:
Characterization of the SARS-CoV frameshift signal
SARS-CoV 移码信号的表征
- 批准号:
7253257 - 财政年份:2006
- 资助金额:
$ 24.87万 - 项目类别:
Characterization of the SARS-CoV frameshift signal
SARS-CoV 移码信号的表征
- 批准号:
7433287 - 财政年份:2006
- 资助金额:
$ 24.87万 - 项目类别:
Characterization of the SARSCoV frameshift signal
SARSCoV 移码信号的表征
- 批准号:
7139717 - 财政年份:2006
- 资助金额:
$ 24.87万 - 项目类别:
相似国自然基金
三种凤尾蕨属植物中吡咯生物碱及其抗菌和抗HCV病毒功能研究
- 批准号:82360689
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于乏氧增强型超声抗菌剂的细菌生物膜感染协同治疗研究
- 批准号:22375101
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非典型I-型聚酮类抗菌剂NFAT-133的芳构化机理
- 批准号:32211530074
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:82202575
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
- 批准号:
10265715 - 财政年份:2020
- 资助金额:
$ 24.87万 - 项目类别:
Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
- 批准号:
10397756 - 财政年份:2020
- 资助金额:
$ 24.87万 - 项目类别:
Mechanistic Studies of Polyketide Synthases Enabled by Unnatural Amino Acids and Antibody Fragment Structural Tools
非天然氨基酸和抗体片段结构工具实现的聚酮化合物合成酶的机理研究
- 批准号:
10227676 - 财政年份:2020
- 资助金额:
$ 24.87万 - 项目类别:
Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
- 批准号:
10557840 - 财政年份:2019
- 资助金额:
$ 24.87万 - 项目类别:
Deciphering the inositol phosphate code in viral pathogenesis and immunity
破译病毒发病机制和免疫中的肌醇磷酸密码
- 批准号:
10338053 - 财政年份:2019
- 资助金额:
$ 24.87万 - 项目类别: