Unsupervised Deep Photon-Counting Computed Tomography Reconstruction for Human Extremity Imaging
用于人体肢体成像的无监督深度光子计数计算机断层扫描重建
基本信息
- 批准号:10718303
- 负责人:
- 金额:$ 60.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsArchitectureAwarenessBackBig DataBismuthClinicalClinical ResearchClinical TrialsComputer SystemsComputer softwareContrast MediaDataData CompressionData SetDictionaryDoseEvaluationFDA approvedGoalsHigh Performance ComputingHumanImageImage EnhancementKnowledgeLearningLimb structureLow Dose RadiationMapsMathematicsMethodsModelingMolecularNatureNew ZealandPerformancePhotonsPlanet MarsProceduresProtocols documentationPublishingRadiation Dose UnitReaderReportingResolutionRoentgen RaysScanningSoftware EngineeringSourceSpeedSystemTechniquesTestingTimeTissuesTrainingValidationX-Ray Computed TomographyX-Ray Medical Imagingclinical applicationclinical imagingcluster computingcomputational platformdata acquisitiondata reductiondeep learningdesigndetectorempowermentexperimental studyfrontierimage reconstructionimaging modalityimprovednanoGoldnanoparticlenovelopen sourcephoton-counting detectorprototypereconstructionsimulationspectral energystability testingtemporal measurementtheoriestomography
项目摘要
Abstract
The state-of-the-art x-ray photon-counting CT (PCCT) generates images in multi-energy bins simultaneously
with high spatial resolution and low radiation dose for tissue characterization and material decomposition. FDA
has approved the techniques in 2021. Both clinical PCCT and micro-PCCT scanners are now commercially
available. This opens a new door to opportunities for functional, cellular, and molecular x-ray imaging with novel
contrast agents such as bismuth and gold nanoparticles. However, x-ray photon-counting detectors are not
perfect, and it remains challenging to reconstruct high-quality PCCT images for various clinical applications.
Over the past several years, deep learning-based tomographic imaging has become a new frontier of image
reconstruction. Different from compressive sensing (CS) methods, which totally rely on the prior information in
terms of an accurate mathematical constraint, the emerging deep learning-based approach is empowered by big
data with which a deep network can be trained for superior tomographic reconstruction. However, a recent study
published in PNAS revealed three types of instabilities of deep tomographic reconstruction networks, which are
believed to be fundamental due to lack of kernel awareness and “nontrivial to overcome”, but CS-based
reconstruction was reported in that study to be stable because of its kernel awareness. Meanwhile, it is hard to
collect large amounts of data with ground-truths for supervised network training up to the clinical image quality.
To overcome the aforementioned challenges in the context of a clinical trial with PCCT using Medipix detectors,
our overall goal is to develop an Unsupervised Deep Learning Approach (UDLA) for few-view and low-dose
image reconstruction based on our Analytic Compressive Iterative Deep (ACID) architecture but specific to PCCT
data, with much higher spatial resolution and computational efficiency, and without the requirement of ground-
truth for training. ACID combines the data-driven power of deep learning, the kernel-awareness of CS, and
iterative refinement to deliver image reconstruction results accurately and stably. To achieve our goal, three
specific aims are defined as follows. Aim 1: UDLA will be designed, developed, optimized, and integrated into
an open-source platform, including a deep end-to-end reconstruction network and an advanced CS module with
a multi-constraint model; Aim 2: UDLA will be tested for stability and generalizability, and accelerated via
software optimization on a high-performance computing platform; and Aim 3: UDLA will be evaluated and
validated in simulation, experiments, and retrospective use of clinical extremity imaging PCCT data.
Upon the completion of this project, the UDLA software should have been characterized for clinical extremity
imaging using Medpix-based PCCT to outperform contemporary iterative algorithms, without the vulnerabilities
of existing deep reconstruction networks and the requirements of ground-truth for network training. In a broader
perspective, our approach represents a paradigm shift towards the integration of model-based and data-driven
reconstruction methods, and may have a lasting impact on PCCT and other tomographic imaging modalities.
抽象的
最先进的 X 射线光子计数 CT (PCCT) 可同时在多能量箱中生成图像
具有高空间分辨率和低辐射剂量,用于组织表征和材料分解。FDA
已于 2021 年批准了该技术。临床 PCCT 和微型 PCCT 扫描仪现已商业化
这为功能性、细胞和分子 X 射线成像提供了新的机会。
然而,X 射线光子计数探测器则不然。
完美,但为各种临床应用重建高质量的 PCCT 图像仍然具有挑战性。
过去几年,基于深度学习的断层成像已成为图像新领域
与压缩感知(CS)方法不同,压缩感知方法完全依赖于先验信息。
根据精确的数学约束,新兴的基于深度学习的方法得到了大数据的支持
然而,最近的一项研究表明,可以使用这些数据来训练深度网络以进行高级断层扫描重建。
发表在 PNAS 上的文章揭示了深度断层重建网络的三种不稳定性,它们是
由于缺乏内核意识和“克服困难”,被认为是根本性的,但基于 CS
该研究报告称重建是稳定的,因为其内核意识,但很难做到。
收集大量具有基本事实的数据,以进行监督网络训练,直至达到临床图像质量。
为了克服使用 Medipix 探测器进行 PCCT 临床试验的挑战,
我们的总体目标是开发一种用于少视图和低剂量的无监督深度学习方法(UDLA)
基于我们的深度分析压缩迭代 (ACID) 架构但特定于 PCCT 的图像重建
数据,具有更高的空间分辨率和计算效率,并且不需要地面
ACID 结合了深度学习的数据驱动能力、CS 的内核意识和
迭代细化以准确稳定地提供图像重建结果 为了实现我们的目标,三个。
具体目标定义如下: 目标 1:UDLA 将被设计、开发、优化并集成到其中。
一个开源平台,包括深度端到端重建网络和先进的 CS 模块
目标 2:UDLA 将进行稳定性和通用性测试,并通过以下方式加速:
高性能计算平台上的软件优化;以及目标 3:将评估并确定 UDLA
通过模拟、实验和临床肢体成像 PCCT 数据的回顾性使用进行了验证。
该项目完成后,UDLA 软件应已针对临床肢体进行了表征
使用基于 Medpix 的 PCCT 进行成像,其性能优于当代迭代算法,且没有漏洞
现有的深度重建网络以及网络训练的地面实况要求。
从角度来看,我们的方法代表了向基于模型和数据驱动的集成的范式转变
重建方法,并可能对 PCCT 和其他断层扫描成像方式产生持久影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hengyong Yu其他文献
Hengyong Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hengyong Yu', 18)}}的其他基金
Tensor-based Dictionary Learning for Imaging Biomarkers
用于成像生物标志物的基于张量的字典学习
- 批准号:
9143765 - 财政年份:2015
- 资助金额:
$ 60.83万 - 项目类别:
Development of Methods and Software for Interior Tomography Applications
内部断层扫描应用方法和软件的开发
- 批准号:
7669831 - 财政年份:2009
- 资助金额:
$ 60.83万 - 项目类别:
Data Consistency Based Motion Artifact Reduction for Head CT
基于数据一致性的头部 CT 运动伪影减少
- 批准号:
7384161 - 财政年份:2007
- 资助金额:
$ 60.83万 - 项目类别:
Data Consistency Based Motion Artifact Reduction for Head CT
基于数据一致性的头部 CT 运动伪影减少
- 批准号:
7491540 - 财政年份:2007
- 资助金额:
$ 60.83万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
Deep-Learning-Augmented Quantitative Gradient Recalled Echo (DLA-qGRE) MRI for in vivo Clinical Evaluation of Brain Microstructural Neurodegeneration in Alzheimer Disease
深度学习增强定量梯度回忆回波 (DLA-qGRE) MRI 用于阿尔茨海默病脑微结构神经变性的体内临床评估
- 批准号:
10659833 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
- 批准号:
10820286 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别: